
PERTURBATIVE INVARIANTS OF CUSPED HYPERBOLIC
3-MANIFOLDS

STAVROS GAROUFALIDIS, MATTHIAS STORZER, AND CAMPBELL WHEELER

Abstract. We prove that a formal power series associated to an ideally triangulated cusped
hyperbolic 3-manifold (together with some further choices) is a topological invariant. This
formal power series is conjectured to agree to all orders in perturbation theory with two
important topological invariants of hyperbolic knots, namely the Kashaev invariant and the
Andersen–Kashaev invariant (also known as the state-integral) of Teichmüller TQFT.
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1. Introduction

This paper concerns the topological invariance of a formal power series associated to an
ideally triangulated 3-manifold M with a torus boundary component [11]. The series is
defined by formal Gaussian integration of a finite dimensional integral (a so-called “state-
integral”) and it is expected to coincide to all orders with the asymptotic expansion of three
important topological invariants of 3-manifolds.

The first is the Kashaev invariant of a hyperbolic knot [25], where Kashaev’s famous
volume conjecture is refined to an asymptotic statement to all orders in perturbation theory
using the above formal power series. This was studied in detail in [21] based on extensive
numerical computations, but it is only proven for a handful of hyperbolic knots.

The second invariant is the Andersen–Kashaev state integral [2], whose asymptotic ex-
pansion for the simplest hyperbolic 41 knot was shown to agree with the above series in [2,
Sec.12], and also observed numerically for the first three simplest hyperbolic knots in [20].
The state-integrals of [2] are finite-dimensional integrals whose integrand is a product of
Faddeev quantum dilogarithms times an exponential of a quadratic form, assembled from
an ideal triangulation of a 3-manifold with torus boundary components. Andersen–Kashaev
proved that these are topological invariants that are the partition function of the Teichmüller
TQFT [2, 1], which is a 3-dimensional version of a quantization of Teichmüller space [26, 17].

A third invariant is the Chern–Simons theory with complex gauge group SL2( ) . This
theory was introduced by Witten [38] and studied extensively by Gukov [23]. Although
Chern–Simons theory with compact gauge group SU(2) has an exact nonperturbative defini-
tion given by the so-called Witten–Reshetikhin–Turaev invariant [37, 33] and a well–defined
perturbation theory involving Feynman diagrams with uni-trivalent vertices [3, 4], the same
is not known for Chern–Simons theory with complex gauge group SL2( ). For reasons that
are not entirely understood, the partition function of complex Chern–Simons theory for
3-manifolds with torus boundary reduces to a finite-dimensional state-integral, as if some
unknown localization principle holds. The corresponding state-integrals were introduced and
studied by Hikami [24], Dimofte [10] and others [12]. Unfortunately, in those works the in-
tegration contour was not pinned down, and this problem was finally dealt with in [2] and,
among other things, implied topological invariance of the state-integrals, which were coined
to be the partition function of Teichmüller TQFT. But ignoring the contour of integration,
and focusing on a critical point of the action, which is a solution to a system of polynomial
equations, allowed [11] to give a definition of the formal power series that are the main fo-
cus of our paper. Note, however, that the Feynman diagrams of [11] involve stable graphs
of arbitrary valency, a perturbative definition of Chern–Simons theory with complex gauge
groups would involve uni-trivalent graphs.

The above discussion points out several aspects of these formal power series and conjectural
relations to perturbation theory of complex Chern–Simons and of Teichüller TQFT. Aside
from conjectures, this paper concerns a theorem, the topological invariance of the above
formal power series.

Let us briefly recall the key ingredients that go into the definition of the series, and
discuss those in detail in later sections. The first ingredient is an ideal triangulation T
with N ideal tetrahedra of a 3-manifold M with torus boundary. Each tetrahedron has



PERTURBATIVE INVARIANTS OF CUSPED HYPERBOLIC 3-MANIFOLDS 3

shapes z ∈ \ {0, 1}, z′ = 1/(1 − z) and z′′ = 1 − 1/z attached to its three pairs of
opposite edges, and the shapes satisfy a system of polynomial equations (so-called “gluing
equations” [34] or Neumann-Zagier equations [29]) determined by the combinatorics of the
triangulation, one for each edge and peripheral curve. After some choices are made (such
as an ordering of the tetrahedra and their edges, a choice of shape for each tetrahedron,
a choice of an edge to remove from the gluing equations, and a choice of peripheral curve
to include), one obtains two matrices A and B with integer entries such that (A |B) is the
upper-half of a symplectic 2N × 2N matrix, as well as a vector ν ∈ N . In addition, we
choose a solution z = (z1, . . . , zN) of the gluing equations as well as a flattening (f, f ′′), i.e.,
an integer solution to the equation ν = Af + Bf ′′. The power series ΦΞ(󰄁) depends on the
tuple Ξ = (A,B, ν, z, f, f ′′), which we collectively call a NZ-datum.

The next ingredient that goes in the definition of ΦΞ(󰄁) is an auxiliary formal power series

ψ󰄁(x, z) := exp

󰀕
−

󰁛
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comes from the asymptotics of the infinite Pochhammer symbol (also known as the quantum
dilogarithm)
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Explicitly, for complex numbers x and z with |z| < 1 and Re(󰄁) < 0 we have (see [39] and
also [22, Lem.2.1])
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Assuming that the matrix B is invertible, (i.e., that det(B) ∕= 0), we introduce the function

fΞ
󰄁 (x, z) = exp
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ψ󰄁(xi, zi) ∈ (z)[x]󰌻󰄁 1
2 󰌼 , (4)

which is the product of one quantum dilogarithm per tetrahedron (each with its own integra-
tion variable), with some additional terms coming from the NZ-datum where x = (x1, ..., xN)

t

and z = (z1, ..., zN).
The last ingredient is the formal Gaussian integration [5]
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of a power series f󰄁(x, z) ∈ (z)[x]󰌻󰄁 1
2 󰌼, with respect to an invertible matrix Λ. Assuming

further that the symmetric matrix

Λ = −B−1A+ diag(1/(1− zj)) (6)

is invertible, we define
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ΦΞ(󰄁) = 〈fΞ
󰄁 (x, z)〉x,Λ ∈ (z)󰌻󰄁󰌼 . (7)

Using a solution z of the Neumann–Zagier equations that corresponds to the discrete
faithful representation ρgeom : π1(M) → PSL2( ) of a cusped hyperbolic 3-manifold M , one
obtains a series ΦΞ(󰄁) with coefficients in the invariant trace field of M . Our main theorem
is the following.

Theorem 1.1. ΦΞ(󰄁) is a topological invariant of a cusped hyperbolic 3-manifold.

A corollary of the above theorem is that every coefficient of the above series is a topological
invariant of a cusped hyperbolic 3-manifold. These topological invariants have a geometric
origin, since they take values in the invariant trace field of the manifold, and hence they are
algebraic, but not (in general) rational, numbers. This series seems to come from hyperbolic
geometry (though a definition of these invariants in terms of the hyperbolic geometry of the
3-manifold is not known), and perhaps not from enumerative quantum field theory (such
as the Gromov–Witten or any of the 4-dimensional known theories). The behavior of these
series under finite cyclic coverings of cusped hyperbolic 3-manifolds is given in [19], and the
formulas presented there (e.g., for the coefficient of 󰄁2) point to unknown connections with
the spectral theory of hyperbolic 3-manifolds.

The proof of our theorem combines the ideas of the topological invariance of the Andersen–
Kashaev state-integrals [2] with those of the Aarhus integral [4]. We briefly recall that the
building block for the state-integral is the Faddeev quantum dilogarithm, the state-integral
is a finite-dimensional integral of a product of Faddeev quantum dilogarithm [15], one for
each tetrahedron of an (ordered) ideal triangulation. Aside from elementary choices, two
important parts in the proof of topological invariance of the state-integral is invariance
under (a) the choice of a nondegenerate quad, and (b) 2–3 ordered Pachner moves, the latter
connecting one ideal triangulation with another. In [2], (a) and (b) are dealt with a Fourier
transform and a pentagon identity for the Faddeev quantum dilogarithm.

The power series ΦΞ(󰄁) is given instead by a formal Gaussian integral (as opposed to
an integral over Euclidean space), where the building block is the formal power series ψ󰄁
instead of the Faddeev quantum dilogarithm. The topological invariance of the ΦΞ(󰄁) under
the choice of quad and under the 2–3 Pachner moves follows from a Fourier tranform identity
and a pentagon identity for ψ󰄁; see Theorems 3.4 and 3.6 below. Although these identities
are, in a sense, limits of the corresponding identities for the Faddeev quantum dilogarithm
(just as ψ󰄁 is a limit of the Faddeev quantum dilogarithm), it would requires additional
analytic work to do so, and instead we give algebraic proofs of theorems 3.4 and 3.6 using
properties of the formal Gaussian integration, together with holonomic properties of the
involved formal power series.

Having discussed the similarities between the proof of Theorem 1.1 and the corresponding
theorem for the state-integral of [2], we now point out some differences. In [2], Andersen–
Kashaev use ordered triangulations, and the state-integral is obtained by the push-forward
of a distribution with variables at the faces and the tetrahedra of the ordered triangulation.
Part of the distribution is a product of delta functions in linear forms of the face-variables.
In our Theorem 1.1, and in the formal Gaussian integration, we carefully avoided the need to
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use delta functions, although such a reformulation of our results are possible, with additional
effort.

We end this section by pointing out a wider context for the asymptotic series ΦΞ(󰄁) and
Theorem 1.1. It was clear from [11] that a NZ-datum Ξ = (A,B, ν, z, f, f ′′) depends on
two square matrices A and B such that ABt is symmetric that may or may not come from
topology, and that the series ΦΞ(󰄁) is defined under the assumption that det(B) ∕= 0 and
det(Λ) ∕= 0. Doing so, the proof of Theorem 1.1 shows that the series ΦΞ(󰄁) is invariant
under the moves that appear in [21, Sec.6]; see also Section 4.

2. Preliminaries

2.1. The Faddeev quantum dilogarithm. In this subsection, we recall some basic prop-
erties of the Faddeev quantum dilogarithm, which are motivations for Theorems 3.4 and 3.6
below. At the same time, we will ignore additional properties of the Faddeev quantum dilog-
arithm that play no role in our paper, such as the fact that it is a meromorphic function
with precise zeros, poles and residues.

The Faddeev quantum dilogarithm [15] ϕ := Φb satisfies a key integral pentagon iden-
tity [16]

e2πixy 󰁨ϕ(x)󰁨ϕ(y) =
󰁝

eπiz
2 󰁨ϕ(x− z)󰁨ϕ(z)󰁨ϕ(y − z) dz (8)

where both sides are tempered distributions on and 󰁨ϕ denotes the distributional (inverse)
Fourier transformation

󰁨ϕ(x) :=
󰁝

e−2πixyϕ(y) dy . (9)

It turns out that the inverse Fourier transform of ϕ±1 is expressed in terms of ϕ as given
in [2, Sec.13.2] 󰁝

e−2πixyϕ(y) dy = ζ8(q/󰁨q)
1
24 e−πix2

ϕ(−x+ cb)

󰁝
e−2πixyϕ(y)−1 dy = ζ−1

8 (󰁨q/q) 1
24 eπix

2

ϕ(x− cb)

(10)

where q = e2πib
2
, 󰁨q = e−2πi/b2 , cb = i

2
(b + b−1) and ζ8 = e2πi/8. The Faddeev quantum

dilogarithm satisfies the inversion formula

ϕ(x)ϕ(−x) = (󰁨q/q) 1
24 eπix

2

(11)

see for example [2, App.A]. In a certain domain, the Faddeev quantum dilogarithm is given
as a ratio of two Pochhammer symbols

Φb(x) =
(−q

1
2 e2πibx; q)∞

(−󰁨q 1
2 e2πib−1x; 󰁨q)∞

, (12)

from which it follows that its asymptotic expansion as b → 0 is given by replacing the
denominator by 1 and the numerator by the asymptotic expansion of the Pochhammer
symbol.
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2.2. Neumann–Zagier data. In this section, we discuss in detail Neumann–Zagier data
following [11]. We start with a 3-manifold M with torus boundary component (all manifolds
and their triangulations will be oriented throughout the paper) equipped with a concrete
oriented ideal triangulation, that is with a triangulation such that each tetrahedron ∆ of T
comes with a bijection of its vertices with those of the standard 3-simplex. (All triangulations
that are used in the computer programs SnapPy [8] and Regina [7] are concrete).

Every concrete tetrahedron ∆ has shape parameters (z, z′, z′′) assigned to pairs of opposite
edges as in Figure 1, where the complex numbers z′ = 1/(1 − z) and z′′ = 1 − 1/z satisfy
the equations

z′′ + z−1 = 1, zz′z′′ = −1 . (13)

0

1

2

3
z

z

z′

z′
z′′

z′′

Figure 1. The shapes of an ideal tetrahedron.

If T is a triangulation as above, an Euler characteristic argument shows that the number
of tetrahedra equals to the number of edges. Fix an ordering of the tetrahedra ∆j for
j = 1, . . . , N and of the edges e1, . . . , eN of T , and assign a shape zj to the tetrahedron ∆j

for j = 1, . . . , N . To describe the complete hyperbolic structure of M (when it exists) and its
deformations, Thurston [34] introduced the gluing equations for the variables z = (z1, . . . , zN)
around each edge ei, for i = 1, . . . , N . In logarithmic form, these equations have the form

N󰁛

j=1

Gi,j log zj +G′
i,j log z

′
j +G′′

i,j log z
′′
j = 2πi, (i = 1, . . . , N) (14)

where Gi,j (and likewise for G′
i,j and G′′

i,j) denote the number of times that an edge of ∆j

labelled zj winds around the edge ei. Every peripheral curve γ in the boundary also gives
rise to a gluing equation of the same form as (14), except the right hand side is 0 instead
of 2πi. Choosing a symplectic basis for H1(∂M, ), we can enhance the equations (14) by
adding the peripheral equations

N󰁛

j=1

GN+c,j log zj +G′
N+c,j log z

′
j +G′′

N+c,j log z
′′
j = 0, (c = 1, 2) . (15)

It turns out that the (N+2)×N matrices G, G′ and G′′ have both symmetry and redundancy.
Any one of the edge equations is implies by the others, and we make a choice to remove one
of them, and replace it by one peripheral equation for a fixed peripheral curve, resulting



PERTURBATIVE INVARIANTS OF CUSPED HYPERBOLIC 3-MANIFOLDS 7

into N × N matrices G, G′ and G′′. Using the second Equation (13) in logarithmic form
log zj + log z′j + log z′′j = πi, we can eliminate one of the three shapes of each tetrahedron
(this is a choice of quad). For example, eliminating the shape z′j for j = 1, . . . , N then results
into a system of equations

N󰁛

j=1

Ai,j log zj +Bi,j log z
′′
j = πiν (i = 1, . . . , N) (16)

where

A = G−G′, B = G′′ −G′ (17)

are the Neumann–Zagier matrices [29] and ν = (2, . . . , 2, 0)t − G′(1, . . . , 1, 1)t ∈ N . The
Neumann–Zagier matrices (A |B) have an important symplectic property, they are the upper
part of a symplectic matrix over [1/2] (and even a symplectic matrix over if one divides
the peripheral gluing equation by 2 while keeping the integrality of its coefficients) [29]. It
follows that ABt is symmetric, that (A |B) has full rank, and that one can always choose a
quad such that B is invertible–for this see [11, Lem.A.3].

A further ingredient of a Neumann–Zagier datum is a flattening, that is a triple (f, f ′, f ′′)
of vectors in N that satisfy the conditions

f + f ′ + f ′′ = (1, . . . , 1)t, Gf +G′f ′ +G′′f ′′ = (2, . . . , 2, 0)t . (18)

Using our choice of quad, we can eliminate f ′ and thus obtain a pair (f, f ′′) of vectors in N

that satisfy the condition

Af +Bf ′′ = ν . (19)

This defines all the terms that appear in a NZ-datum Ξ = (A,B, ν, z, f, f ′′). The definition of
the series ΦΞ(󰄁) requires a nondegenerate NZ datum Ξ, that is one that satisfies the condition
det(B) ∕= 0, which as we discussed above, can always be achieved, as well as the condition
det(Λ) ∕= 0. We discuss this choice next, and connect it to the geometric representation of a
hyperbolic 3-manifold M .

We end this section with a comment regarding Neumann–Zagier data of 3-manifolds
with several (as opposed to one) torus boundary components. Their ideal triangulations
with equal number N of tetrahedra as edges and the edge gluing equations have the same
shape (14) as above. If r denotes the number of boundary components, then there are 2r
peripheral equations (15) and after a choice of one peripheral curve per boundary compo-
nent, this leads to (N + r) × N matrices G, G′ and G′′. The edge gluing equations have
redundancy, and although it is not true that we can remove any r of them, it is shown in [18,
Sec.4.6] that one can remove r of them and and replace them by r peripheral equations so
as to obtain N × N matrices G, G′ and G′′ such that the corresponding matrices (A |B)
defined in (17) have the same symplectic properties as in the case of r = 1. Moreover, any
two choices of removal of the r edge equations are related to each other by an invertible
matrix in GLr( ). Finally, flattenings satisfy Equations (18) where the right hand side of
the second equation is the vector (2, . . . , 2, 0, . . . , 0)t ∈ N+r with the first N coordinates
equal to 2 and the remaining r coordinates equal to zero.
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For simplicity in the presentation (related to the choice of peripheral curves and the
flattenings), we will give the proof of Theorem 1.1 assuming that the 3-manifold M has one
cusp. The proof applies verbatim to the general case of arbitrary number of cusps.

2.3. Geometric aspects. In this section, we discuss some geometric aspects of Theorem 1.1
related to the choice of the shapes z in a Neumann–Zagier datum. Let us fix an ideal
triangulation T . A solution z ∈ ( \ {0, 1})N to the Neumann–Zagier equations gives rise,
via a developing map, to a representation ρz : π1(M) → PSL2( ). For a detailed discussion,
see the appendix of [6]. However, not every representation ρ : π1(M) → PSL2( ) is “seen”
by T , that is, is in the image of the map z → ρz. What’s more, if ρ is in the image of the
above map and we do a 2–3 Pachner move on the triangulation, it may no longer be in the
image of the map corresponding to the new triangulation. The reason is that the shapes
of the two triangulations are related by a rational map, which may send a complex number
different from 0 and 1 to 0, 1 or ∞. To phrase the problem differently, every two ideal
triangulations (each with at least two tetrahedra, as we will always assume) of a 3-manifold
with non-empty boundary are related by a sequence of 2–3 Pachner moves [28, 32]. However,
it is not known that the set of ideal triangulations that see the discrete faithful representation
ρgeom : π1(M) → PSL2( ) is connected under 2–3 Pachner moves, nor is it known whether
the set of nondegenerate NZ data is connected under 2–3 Pachner moves.

A solution to these issues was found in [11], and this was used to prove the topological
invariance of the 1-loop function, and was also used in [18] to prove the topological invariance
of the 3D-index. Let us recall the geometric details here. Every cusped hyperbolic 3-
manifold M (complete, finite volume) has a canonical ideal cell decomposition whose cells
are 3-dimensional convex ideal polytopes given by Epstein–Penner [13]. It is easy to see that
every convex ideal polyhedron can be triangulated into ideal tetrahedra by connecting an
ideal vertex to all other ideal vertices (thus reducing the problem to the ideal cone of an
ideal polygon), and then triangulating further the ideal polygon into ideal triangles. Doing
so, the triangulation of the common faces of the 3-dimensional convex ideal polytopes may
not match, in which case one can pass from one triangulation of a polygonal face to another
by adding flat tetrahedra.

The question is whether every two such triangulations are related by a sequence of 2–3
moves. This is a combinatorial problem of convex geometry, which we summarize below.
For a detailed discussion, the reader may consult the book [9] and references therein.

Fix a convex polytope P in d. One can consider the set of triangulations of P . When
d = 2, P is a polygon and it is known that every two triangulations are related by a sequence
of flips. For general d, flips are replaced by geometric bistellar moves. When d ≥ 5, it is
known that the graph of triangulations (with edges given by geometric bistellar flips) is
not connected, and has isolated vertices. For d = 3, it is not known whether the graph is
connected.

The situation is much better when one considers regular triangulations of P . In that case,
the corresponding graph of regular triangulations is connected and, in fact, it is the edge
set of the secondary polytope of P . When d = 3 and P is convex and in general position,
then the only geometric bistellar move is the 2–3 move where the added edge that appears
in the move is an edge that connects two vertices of P . When d = 3 and P is not in general
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position, the same conclusion holds as long as one allows for tetrahedra that are flat, i.e., lie
on a 2-dimensional plane.

Returning to the Epstein-Penner ideal cell decomposition, let T EP denote a regular ideal
triangulations of the canonical ideal cell decomposition of M . (For a detailed discussion of
this set, see also [18, Sec.6]). The set {T EP} of regular ideal triangulations is connected
by 2–3 Pachner moves. Moreover, such triangulations see ρgeom since by the geometric
construction, the shapes are always nondegenerate, i.e., not equal to 0 or 1 and in fact
always have nonnegative (though sometimes zero) imaginary part.

Finally, we need to show that det(Λ) is nonzero. This follows from the fact that
det(B) det(Λ) = det(−A+Bdiag(1/(1− zj)) equals (up to multiplication by a monomial in
z and z′′) to the 1-loop invariant of [11, Sec.1.3]. The nonvanishing of the latter follows from
Thurston’s hyperbolic Dehn surgery theorem [34], which implies that ρgeom ∈ Xgeom

M ∪PM is
an isolated smooth point of the geometric componentXgeom

M of the PSL2( )-character variety
of M , intersected with the locus PM of boundary-parabolic PSL2( )-representations, i.e.,
representations ρ satisfying tr(ρ(γ))2 = 4 for all peripheral elements γ ∈ π1(M). Since the
1-loop invariant is the determinant of the Hessian of the defining NZ equations of ρgeom, it
follows that the 1-loop invariant is nonzero.

3. Formal Gaussian integration

3.1. Basics on formal Gaussian integration. In this section, we review the basic prop-
erties of formal Gaussian integration, which is a combinatorial analogue of integration of
analytic functions. This theory was introduced and studied in detail in [4], where it was
used to define a universal perturbative finite type invariant of rational homology 3-spheres,
and to identify it with the trivial connection contribution of Chern–Simons perturbation
theory.

As a warm-up, the formal Gaussian integral of a monomial xn in one variable with respect
to the quadratic form λ ∕= 0 is defined by

〈xn〉x,λ =

󰀫
λ−n/2(n− 1)!! n even

0 n odd .
(20)

When λ > 0, then the above bracket equals to a normalized Gaussian integral

〈xn〉x,λ =

󰁕
e−

1
2
λx2

xn dx
󰁕

e−
1
2
λx2

dx
, (21)

explaining the naming of formal Gaussian integration. The formal Gaussian integration can
be extended by linearity to 〈f(x)〉x,λ for any polynomial f(x), or even further to a power
series f(x) =

󰁓
n≥0 anx

n whose coefficients tend to zero in a local ring (such as the ring

󰌻󰄁 1
2 󰌼).

The formal Gaussian integral (20) has a multivariable extension given in Equation (5)
where x is a vector of variables and Λ is an invertible matrix over a field matching the size of
x. Throughout this paper, the entries of Λ are elements of the field (z) where z is a vector of
variables, the integrable functions f󰄁(x, z) that we apply the formal Gaussian integration with

respect to x with be elements of (z)[x]󰌻󰄁 1
2 󰌼, and the result of formal Gaussian integration
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will be an element of the ring (z)󰌻󰄁󰌼 or (z)[x]󰌻󰄁 1
2 󰌼. When we specialize to the case of a

vector of algebraic numbers z, then (z) defines the corresponding number field.
Just like integration of sufficiently smooth functions satisfies certain invariance properties

(such as change of variables, iterated integration, and even integration by parts [4]), so does
formal Gaussian integration. The corresponding identities of formal Gaussian integration
are combinatorial statements about polynomials or rational functions and often follow from
the corresponding statements of integration of functions.

We now give some elementary properties of formal Gaussian integration that we will use
in our paper.

Lemma 3.1. (a) For all invertible matrices Λ and P over (z), we have

〈f󰄁(Px, z)〉x,P tΛP = 〈f󰄁(x, z)〉x,Λ . (22)

(b) For all invertible matrices Λ and vectors G over (z), we have

〈exp(−GtΛx󰄁
1
2 )f󰄁(x+G󰄁

1
2 , z)〉x,Λ = exp

󰀕
GtΛG

2
󰄁
󰀖
〈f󰄁(x, z)〉x,Λ (23)

(c) If Λ =
󰀃

A B
Bt C

󰀄
, and Λ and A invertible, then for any F , we have

󰁇
exp(Fx′󰄁

1
2 )f󰄁(x

′′, z)
󰁈

x,Λ
= exp

󰀕
FA−1F t

2
󰄁
󰀖󰁇

exp(−FA−1Bx′′󰄁
1
2 )f󰄁(x

′′, z)
󰁈

x′′,C−BtA−1B
.

(24)

Proof. Part (a) follows from the fact the integration is unchanged under a linear change of
variables.

Part (b) follows from the fact the integration is unchanged under an affine change of
variables.

Part (c) follows from Fubini’s theorem [4, Prop.2.13], combined with Equation (23). □
The next lemma, which will be important in the application of q-holonomic methods in

Section 3.2 and in the proofs of Theorems 3.4 and 3.6 below, concerns the behavior of formal
Gaussian integration when z = (z1, . . . , zr) is shifted to eε󰄁z := (eε1󰄁z1, . . . , e

εr󰄁zr) for integers
εj.

Lemma 3.2. For all invertible matrices Λ(z) over (z) and all integrable functions f󰄁, we
have

〈f󰄁(x, z)〉x,Λ(z)|z 󰀁→eε󰄁z =

󰁶
detΛ(eε󰄁z)

detΛ(z)

󰁇
exp

󰀕
xt
󰀃
Λ(z)− Λ(eε󰄁z)

󰀄
x

2

󰀖
f󰄁(x, e

ε󰄁z)
󰁈

x,Λ(z)
.

(25)

Proof. The lemma follows from recentering the Gaussian after multiplying z by eε󰄁. □

3.2. q–holonomic aspects of ψ󰄁. It is well-known that identities of holonomic functions
can be proven algorithmically [36, 31]. We will use these ideas, adapted to our needs,
to prove fundamental identities between certain Gaussian integrals involving the building
block exp(ψ󰄁) of our series ΦΞ(󰄁). Since ψ󰄁 is related to the infinite Pochhammer symbol
given in Equation (2), its functional equations will be of fundamental importance. From its
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definition, it is clear that the infinite Pochhammer symbol satisfies a simple first order linear
q–difference equation

(x; q)∞ = (1− x)(qx; q)∞ . (26)

To convert this into an identity of formal 󰄁-series where q = e󰄁, we use the fact that there is
an action of the quantum plane (also known as q–Weyl [14, Ex. 1.7] algebra) on the space

(z)[x]󰌻󰄁 1
2 󰌼 of integrable functions by an action on the z-variable given by

(Lf󰄁)(x, z) = f󰄁(x, e
󰄁z), (Mf󰄁)(x, z) = e󰄁f󰄁(x, e

󰄁z) (27)

where LM = qML. The next lemma asserts that the completion 󰁥ψ󰄁(x, z)

󰁥ψ󰄁(x, z) : = exp
󰀓
− Li2(z)

󰄁
− Li1(z)x

󰄁 1
2

+
1

2
Li1(z)−

Li0(z)x
2

2

󰀔
ψ󰄁(x, z)

= exp
󰀓
−

󰁛

k,ℓ∈ ≥0

Bk x
ℓ 󰄁k+ ℓ

2
−1

ℓ! k!
Li2−k−ℓ(z)

󰀔

∈ exp
󰀓
− Li2(z)

󰄁
− Li1(z)x

󰄁 1
2

+
1

2
Li1(z)−

Li0(z)x
2

2

󰀔
(1 + 󰄁

1
2 (z)[x]󰌻󰄁 1

2 󰌼)

(28)

of ψ󰄁(x, z), as well as ψ󰄁(x, z) itself, satisfy a corresponding first order linear q–difference
equation, albeit with complicated coefficients.

Lemma 3.3. (a) We have:

󰁥ψ󰄁(x, e
󰄁z) = (1− zex󰄁

1/2

) 󰁥ψ󰄁(x, z) . (29)

(b) We have:

ψ󰄁(x, e
󰄁z) = (1− zex󰄁

1/2

)ψ󰄁(x, z)

󰁵
1− e󰄁z

1− z

× exp
󰀓Li2(e󰄁z)

󰄁
− Li2(z)

󰄁
+

Li1(e
󰄁z)x

󰄁 1
2

− Li1(z)x

󰄁 1
2

+
1

2
Li0(e

󰄁z)x2 − 1

2
Li0(z)x

2
󰀔
.

(30)

Note that the identity (29) takes place in a larger ring, which includes the symbols

exp(Li2(z)󰄁 ), exp(Li1(z)x
󰄁
1
2

), exp(Li0(z)x
2

2
) and exp(Li0(z)x

2

2
) which one can adjoin in the differential

field (z)((󰄁)) as is standard in differential Galois theory of linear differential equations [35].
The symbols Lik(z) for k = 0, 1, 2 can be interpreted as normalized solutions to the linear
differential equations z d

dz
Lik(z) = Lik−1(z) with Li0(z) = z/(1 − z) and satisfy the usual

properties Lik(e
󰄁z) =

󰁓∞
r=0

1
r!
Lik−r(z)󰄁r. On the other hand, the coefficients in identity (30)

are elements of the ring (z)[x]󰌻󰄁 1
2 󰌼.

Proof. Part (a) can be proved directly using the facts that for the Bernoulli polynomials
Br(x) we have Br(1) = Br + δr,1 and Br(x) =

󰁓r
k=0

󰀃
r
k

󰀄
Bn−kx

k. Applying these identities we
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find that

exp
󰀓
−

󰁛

k,ℓ∈ ≥0

Bkx
ℓ󰄁k+ ℓ

2
−1

ℓ!k!
Li2−k−ℓ(ze

󰄁)
󰀔

= exp
󰀓
−

󰁛

r,ℓ∈ ≥0

r󰁛

k=0

Bk

󰀕
r

k

󰀖
xℓ󰄁r+ ℓ

2
−1

ℓ!r!
Li2−r−ℓ(z)

󰀔

= exp
󰀓
−

󰁛

r,ℓ∈ ≥0

Br(1)x
ℓ󰄁r+ ℓ

2
−1

ℓ!r!
Li2−r−ℓ(z)

󰀔

= exp
󰀓
− Li1(ze

x󰄁1/2)−
󰁛

r,ℓ∈ ≥0

Brx
ℓ󰄁r+ ℓ

2
−1

ℓ!r!
Li2−r−ℓ(z)

󰀔

= (1− zex󰄁
1/2

) exp
󰀓
−

󰁛

r,ℓ∈ ≥0

Brx
ℓ󰄁r+ ℓ

2
−1

ℓ!r!
Li2−r−ℓ(z)

󰀔
.

(31)

Part (b) follows from (a), using Equation (28) and expanding in 󰄁 to find that
󰁶

1− e󰄁z

1− z
exp

󰀓Li2(e󰄁z)

󰄁
−

Li2(z)

󰄁
+

Li1(e󰄁z)x

󰄁
1
2

−
Li1(z)x

󰄁
1
2

+
1

2
Li0(e

󰄁z)x2 −
1

2
Li0(z)x

2
󰀔
∈ (z)[x]󰌻󰄁 1

2 󰌼 . (32)

□

We end this section by discussing a useful relation between ψ󰄁(x, z) and its specialization

at x = 0. It is easy to see that the completion 󰁥ψ󰄁(x, z) of ψ󰄁(x, z) is regular at x = 0 and
satisfies

󰁥ψ󰄁(x, z) = 󰁥ψ󰄁(0, ze
x󰄁1/2) . (33)

This implies a corresponding statement

ψ󰄁(x, z) = ψ󰄁
󰀃
0, zex󰄁

1/2󰀄
C󰄁(x, z), (34)

for ψ󰄁 where

C󰄁(x, z) = exp
󰀓
−

󰁛

ℓ≥3

󰄁 ℓ
2
−1

ℓ!
Li2−ℓ(z)x

ℓ +
1

2

󰁛

ℓ≥1

h
ℓ
2

ℓ!
Li1−ℓ(z)x

ℓ
󰀔

= exp
󰀓
− Li2(ze

x󰄁
1
2 )

󰄁
+

Li2(z)

󰄁
− log(1− z)

󰄁 1
2

x+
z

1− z

x2

2

− 1

2
(log(1− zez󰄁

1
2 )− log(1− z))

󰀔
.

(35)

3.3. Fourier transform of ψ󰄁. In this section, we prove two functional identities for
ψ󰄁(•, z), ψ󰄁(•, z′) and ψ󰄁(•, z′′) where z′ := 1/(1 − z) and z′′ := 1 − 1/z are related to
the /3 -symmetry of the shapes of a tetrahedron, and reflect the /3 -symmetry of the
dilogarithm function.

The next theorem is a formal Gaussian integration version of the Fourier transform of the
Faddeev quantum dilogarithm given in Equation (9). The proof, however, does not follow
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from the distributional identity (9), and instead uses q–holonomic ideas and the basics of
formal Gaussian integration.

This theorem and its Corollary 3.5 are used in Section 5 to show that the power series
ΦΞ(󰄁) are independent of the choice of a nondegenerate quad.

Theorem 3.4. We have:

ψ󰄁(x, z) = e−
󰄁
24

󰁇
exp

󰀓󰀓
y +

xz

1− z

󰀔󰄁 1
2

2

󰀔
ψ󰄁

󰀓
y +

xz

1− z
,

1

1− z

󰀔󰁈

y,1−z−1

(36)

in the ring (z)[x]󰌻󰄁 1
2 󰌼.

In fact, both sides of of Equation (36) lie in the subring [z±, (1− z)−1][x]󰌻󰄁 1
2 󰌼.

Proof. It it clear from the definition that both sides of Equation (36) are elements of the
ring (x)[z]󰌻󰄁󰌼. First, we will prove the specialization of Equation (36) when x = 0, i.e., we
will show that

ψ󰄁(0, z) = e−
󰄁
24

󰁇
exp

󰀓y
2
󰄁

1
2

󰀔
ψ󰄁

󰀓
y,

1

1− z

󰀔󰁈

y,1−z−1
∈ (z)[[󰄁]] . (37)

To prove this, we will combine q-holonomic ideas with formal Gaussian integration. From

Equation (29), we see that the left hand side of Equation (37) multiplied by exp(−Li2(z)󰄁−1)√
1−z

satisfies a simple first order q–difference equation. We want to show the same for the right
hand side. To do this, consider the function

Im,󰄁(w, z) = wme−
󰄁
24

+π2

6󰄁 exp
󰀓
log(w)

󰀓
− log(w)

2󰄁
+

πi

󰄁
− log(z)

󰄁
+

1

2

󰀔󰀔
󰁥ψ󰄁(0, w) (38)

which is an element of a larger ring discussed in relation to 󰁥ψ󰄁 of Equation (28). Using
Equation (34) and the symmetry

Li2(z) = Li2

󰀓 1

1− z

󰀔
− 1

2
log(1− z)2 + πi log(1− z)− log(z) log(1− z)− π2

6
(39)

of the dilogarithm [39], it is easy to see that the right hand side of Equation (37) is given by
󰁇√

−z exp
󰀓Li2(z)

󰄁
+ (1− z−1)

w2

2

󰀔
I0,󰄁

󰀓 1

1− z
ew󰄁1/2 , z

󰀔󰁈

w,1−z−1
. (40)

The function Im,󰄁 satisfies the linear q–difference equations

Im,󰄁(e
󰄁w, z) = −em󰄁w−1z−1(1− w)Im,󰄁(w, z) ,

Im,󰄁(w, e
󰄁z) = w−1Im,󰄁(w, z) ,

Im,󰄁(w, z) = wIm,󰄁(w, z) ,

(41)

which imply that

(1− e−m󰄁z)Im,󰄁

󰀓 1

1− z
ew󰄁1/2+󰄁, z

󰀔
= Im

󰀓 1

1− z
ew󰄁1/2 , e󰄁z

󰀔
. (42)

If we multiply both sides of (42) with the factors from Equation (40) and take the bracket of
both sides and apply Lemma 3.1 and Lemma 3.2 to change coordinates and the Gaussian, we
find that whenm = 0 both sides of Equation (37) satisfy the same q–difference equation (29).
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Moreover, it is easy to see that both sides of Equation (40) are power series in 󰄁 with
coefficients rational functions of z of nonpositive degree, thus we can work with the ring

󰌻z−1󰌼󰌻󰄁󰌼 instead. In this case, the Newton polygon of this first order linear q-difference
equation implies that it has a unique solution in 󰌻z−1󰌼󰌻󰄁󰌼 determined by its value at z = ∞.
Therefore, the identity in Equation (37) follows from its specialization at z = ∞. Since

ψ󰄁(0,∞) = exp
󰀓 󰄁
12

󰀔
,

e
−󰄁
24

󰁇
exp

󰀓w
2
󰄁

1
2

󰀔
ψ󰄁 (w, 0)

󰁈

w,1
= e

−󰄁
24

󰁇
exp

󰀓w
2
󰄁

1
2

󰀔󰁈

w,1
= exp

󰀓 󰄁
12

󰀔
,

(43)

this completes the proof of Equation (37).

Going back to the general case of z, Equation (36) follows from Equation (34) together
with (37) using Lemma 3.2 to shift the Gaussian and Lemma 3.1 to change integration
variable via the transformation

w 󰀁→ w − 1

󰄁 1
2

log

󰀕
1− z

1− zex󰄁1/2

󰀖
− x

1− z−1
. (44)

The detailed calculation is given in Appendix A. □
Theorem 3.4 implies the following identity relating ψ󰄁(•, z) and ψ󰄁(•, z′′).

Corollary 3.5. We have:

ψ󰄁(x, z) = e
󰄁
24

󰁇
exp

󰀓
− x

2
󰄁

1
2

󰀔
ψ󰄁

󰀓
y − x

1− z
, 1− z−1

󰀔󰁈

y,z−1
(45)

in the ring (z)[x]󰌻󰄁 1
2 󰌼.

Proof. Apply Equation (36) to the ψ󰄁 that appears on the right hand side of the same
Equation (36). Then apply a change of variables and Fubini’s theorem of Lemma 3.1 to
calculate the bracket for the variable that doesn’t appear in the argument of the remaining
ψ󰄁. □
3.4. Pentagon identity for ψ󰄁. In this section, we prove a pentagon identity for the func-
tions ψ󰄁(•, z) where z takes the five values

[z1] + [z2] 󰀁→ [z1z
−1
0 ] + [z0] + [z2z

−1
0 ], z0 = z1 + z2 − z1z2 (46)

what appear in the 5-term relation for the dilogarithm. The next theorem is a formal Gauss-
ian integration version of the pentagon identity (8) of the Faddeev quantum dilogarithm and
will be used in Section 6 to prove that the series ΦΞ(󰄁) is independent of 2–3 Pachner moves.
Let us denote

δ = 2 + Li0(z1z
−1
0 ) + Li0(z0) + Li0(z2z

−1
0 ) =

(z1 + z2 − z1z2)
2

z1z2(1− z1)(1− z2)
. (47)

Theorem 3.6. We have:

ψ󰄁(x, z1)ψ󰄁(y, z2) = e−
󰄁
24

󰁇
ψ󰄁

󰀓
− w − y +

xz2 + yz1
z0

, z1z
−1
0

󰀔

ψ󰄁

󰀓
w + x+ y − xz2 + yz1

z0
, z0

󰀔
ψ󰄁

󰀓
− w − x+

xz2 + yz1
z0

, z2z
−1
0

󰀔󰁈

w,δ

(48)
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in the ring (z1, z2)[x, y]󰌻󰄁
1
2 󰌼.

Proof. It is clear from the definition that both sides of Equation (48) are elements of the ring

(z1, z2)[x, y]󰌻󰄁
1
2 󰌼. To prove this, we follow the same approach we used to prove Theorem 3.4.

First, we prove the identity (48) when u = v = 0, i.e., we will show that

ψ󰄁(0, z1)ψ󰄁(0, z2) = e−
󰄁
24

󰀍
ψ󰄁(−w, z1z

−1
0 )ψ󰄁(w, z0)ψ󰄁(−w, z2z

−1
0 )

󰀎
w,δ

(49)

in the ring (z1, z2)󰌻󰄁󰌼 and to prove this we will again use q–holonomic methods. To do so,
consider the function

Im,󰄁(z1, z2, z) = e
π2

6󰄁 −
󰄁
24 zm 󰁥ψ󰄁(0, z1z

−1) 󰁥ψ󰄁(0, z) 󰁥ψ󰄁(0, z2z
−1)

× exp
󰀓
− log(z1) log(z2)

󰄁
+

log(z) log(z1)

󰄁
+

log(z) log(z2)

󰄁
− log(z)2

󰄁

󰀔
,

(50)

which is again an element of a larger ring discussed in relation to 󰁥ψ󰄁 of Equation (28). Using
Equation (34) and the five term relation for the dilogarithm [39], it is easy to see that the
right hand side of Equation (49) is given by

󰁇√z1z2(1− z1)(1− z2)

z1 + z2 − z1z2
exp

󰀓Li2(z1)
󰄁

+
Li2(z2)

󰄁
+

δ

2
z2
󰀔
I0,󰄁(z1, z2, z0e

w󰄁1/2)
󰁈

w,δ
. (51)

The function Im,󰄁 satisfies the system of linear q–difference equations

Im,󰄁(e
󰄁z1, z2, z) = z z−1

2 (1− z1z
−1) Im,󰄁(z1, z2, z) ,

Im,󰄁(z1, e
󰄁z2, z) = z z−1

1 (1− z2z
−1) Im,󰄁(z1, z2, z) ,

Im,󰄁(z1, z2, e
󰄁z) = (1− z) z1z2z

−2e(m−1)󰄁Im,󰄁(z1, z2, z) ,

Im+1,󰄁(z1, z2, z) = z Im,󰄁(z1, z2, z) ,

(52)

which can be derived from Equation (29). In fact, the function Im,󰄁 is holonomic of rank 1,
a fact that we will not use explicitly [31]. Therefore, we see that

Im,󰄁(e
󰄁z1, z2, z) = z−1

2 Im+1,󰄁(z1, z2, z)− z1z
−1
2 Im,󰄁(z1, z2, z) ,

Im,󰄁(e
󰄁z1, z2, (e

󰄁z1 + z2 − e󰄁z1z2)e
w󰄁1/2 )

= z−1
2 Im+1,󰄁(z1, z2, (e

󰄁z1 + z2 − e󰄁z1z2)e
w󰄁1/2 )− z1z

−1
2 Im,󰄁(z1, z2, (e

󰄁z1 + z2 − e󰄁z1z2)e
w󰄁1/2 ) ,

Im,󰄁(z1, z2, (z1 + z2 − z1z2)e
z󰄁1/2+󰄁)

= z1z2e
(m−1)󰄁Im−2,󰄁(z1, z2, (z1 + z2 − z1z2)e

z󰄁1/2 )− z1z2e
(m−1)󰄁Im−1,󰄁(z1, z2, (z1 + z2 − z1z2)e

z󰄁1/2 ) .

(53)

Let us define 󰁥Jm,󰄁 and Jm,󰄁 by the equation

󰁥Jm,󰄁(z1, z2) =
1󰁳

(1− z1)(1− z2)
exp

󰀓
− Li2(z1)

󰄁
− Li2(z2)

󰄁

󰀔
Jm,󰄁(z1, z2)

=
󰁇󰁳z1z2(1− z1)(1− z2)

z1 + z2 − z1z2
exp

󰀓δ
2
z2
󰀔
Im,󰄁(z1, z2, z0e

w󰄁1/2)
󰁈

w,δ
.

(54)

If we multiply both sides of the Equations (53) with the factors from Equation (51), take
the bracket of both sides, and apply Lemma 3.2 to change coordinates and the Gaussian, we
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find that 󰁥J󰄁,m(z1, z2) satisfies the q–difference equations

󰁥Jm,󰄁(e
󰄁z1, z2) = z−1

2
󰁥Jm+1,󰄁(z1, z2)− z1z

−1
2

󰁥Jm,󰄁(z1, z2) ,

󰁥Jm,󰄁(z1, e
󰄁z2) = z−1

1
󰁥Jm+1,󰄁(z1, z2)− z−1

1 z2 󰁥Jm,󰄁(z1, z2) ,

󰁥Jm,󰄁(z1, z2) = z1z2e
(m−1)󰄁 󰁥Jm−2,󰄁(z1, z2)− z1z2e

(m−1)󰄁 󰁥Jm−1,󰄁(z1, z2) .

(55)

From these relations we can derive the equations

0 = (z1 − z1e
(m+1)󰄁 + z21e

(m+1)󰄁 − z1) 󰁥Jm,󰄁(z1, z2)

+ (z1z2e
(m+1)󰄁 − z2 + qz1) 󰁥Jm,󰄁(e

󰄁z1, z2) + z2 󰁥Jm,󰄁(e
2󰄁z1, z2) ,

0 = (z2 − z2e
(m+1)󰄁 + z22e

(m+1)󰄁 − z2) 󰁥Jm,󰄁(z1, z2)

+ (z2z1e
(m+1)󰄁 − z1 + qz2) 󰁥Jm,󰄁(z1, e

󰄁z2) + z1 󰁥Jm,󰄁(z1, e
2󰄁z2) .

(56)

These q–difference equations give rise to equations for Jm,󰄁 given by

0 = (z1 − z1e
󰄁 + z21e

󰄁 − z1)Jm,󰄁(z1, z2)

+ (z1z2e
󰄁 − z2 + qz1)

󰁵
1− z1
1− e󰄁z1

exp
󰀓Li2(z1)− Li2(e

󰄁z1)

󰄁

󰀔
Jm,󰄁(e

󰄁z1, z2)

+ z2

󰁵
1− z1

1− e2󰄁z1
exp

󰀓Li2(z1)− Li2(e
2󰄁z1)

󰄁

󰀔
Jm,󰄁(e

2󰄁z1, z2) ,

0 = (z2 − z2e
󰄁 + z22e

󰄁 − z2)Jm,󰄁(z1, z2)

+ (z2z1e
󰄁 − z1 + qz2)

󰁵
1− z2
1− e󰄁z2

exp
󰀓Li2(z2)− Li2(e

󰄁z2)

󰄁

󰀔
Jm,󰄁(z1, e

󰄁z2)

+ z1

󰁵
1− z2

1− e2󰄁z2
exp

󰀓Li2(z2)− Li2(e
2󰄁z2)

󰄁

󰀔
Jm,󰄁(z1, e

2󰄁z2) .

(57)

These equations are also satisfied by the left hand side of Equation (49), which follows from
repeated application of Equation (30).

It is easy to see that both sides of Equation (49) are formal power series in 󰄁 with co-
efficients rational functions of (z1, z2) of nonpositive degree with respect to both z1 and
z2, thus their coefficients embed in 󰌻z−1

1 , z−1
2 󰌼, and it suffices to prove (49) in the ring

󰌻z−1
1 , z−1

2 󰌼󰌻󰄁󰌼. In this case, we consider the linear q-difference equations (57) over the ring
󰌻z−1

1 , z−1
2 󰌼󰌻󰄁󰌼. Looking at the corresponding Newton polytopes, the leading monomials

that appear as coefficients of this q–difference equation (57) at ∞ are z21(1 + O(z−1
1 )O(z02))

and z21z2(1 + O(z−1
1 )O(z02)) for the first equation, and z22(1 + O(z01)O(z−1

2 )) and z1z
2
2(1 +

O(z01)O(z−1
2 )) for the second equation, respectively. The structure of these monomials

and their Newton polytopes shows that there is a unique solution to these equations in
󰌻z−1

1 , z−1
2 󰌼󰌻󰄁󰌼 determined by the value at z1 = z2 = ∞. Therefore, the identity in Equa-

tion (49) reduces to its specialization at z1 = z2 = ∞. Since

ψ󰄁(0,∞)ψ󰄁(0,∞) = e
󰄁
6 and

e−
󰄁
24

󰀍
ψ󰄁(−w, 0)2 ψ󰄁(w,∞)

󰀎
w,δ

= e−
󰄁
24

󰁇
exp

󰀓 󰄁
12

− z󰄁 1
2

2

󰀔󰁈

w,δ
= e

󰄁
6 ,

(58)
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this completes the proof of Equation (49).

Going back to the general case of x, y, Equation (48) follows from Equation (34) together
with (49) using Lemma 3.2 to shift the Gaussian and with a change of integration variable

w 󰀁→ w +
1

󰄁 1
2

log

󰀕
z1 + z2 − z1z2

z1ex1󰄁1/2 + z2ex2󰄁1/2 − z1z2e(x1+x2)󰄁1/2

󰀖
+ x+ y − xz1 + yz2

z0
. (59)

The detailed calculation is given in Appendix B. □
3.5. Inversion formula for ψ󰄁. In this section, we give an inversion formula for ψ󰄁 analo-
gous to the inversion formula (11) for the Faddeev quantum dilogarithm. Although we will
not use this formula explicitly in our paper, we include it for completeness.

Lemma 3.7. We have:

ψ󰄁(x, z)
1− z−1e−x󰄁1/2

1− z−1
ψ󰄁(−x, 1/z) = exp

󰀓
− x󰄁 1

2

2
+

󰄁
12

󰀔
, (60)

󰁥ψ󰄁(0, z) 󰁥ψ󰄁(0, 1/z) =

√
−z

1− z
exp

󰀓π2

6󰄁
+

1

2󰄁
log(−z)2 +

󰄁
12

󰀔
. (61)

Proof. These formulas all follow from the well-known inversion formulas for the polyloga-
rithms (see for example [30]):

Li2(z) + Li2(1/z) = −π2

6
− 1

2
log(−z)2 ,

Li1(z)− Li1(1/z) = − log(−z) ,

Li0(z) + Li0(1/z) = −1 ,

Li−n(z) + (−1)n Li−n(1/z) = 0 (n > 0) .

(62)

Using these relations, we have

󰁥ψ󰄁(0, z) 󰁥ψ󰄁(0, 1/z) = exp
󰀓
−

󰁛

k∈ ≥0

Bk 󰄁k−1

k!
(Li2−k(z) + Li2−k(1/z))

󰀔

=

√
−z

1− z
exp

󰀓π2

6󰄁
+

1

2󰄁
log(−z)2 +

󰄁
12

󰀔
.

(63)

Similarly, we find that

ψ󰄁(x, z)
1− z−1e−x󰄁1/2

1− z−1
ψ󰄁(−x, 1/z)

= exp

󰀕
−

󰁛

k,ℓ∈ ≥0

k+ ℓ
2>1

Bk x
ℓ 󰄁k+ ℓ

2
−1

ℓ! k!

󰀃
Li2−k−ℓ(z) + (−1)k+ℓ Li2−k−ℓ(1/z)

󰀄󰀖

= exp
󰀓
− x󰄁 1

2

2
+

󰄁
12

󰀔
.

(64)

Notice that this is exactly the factor that appeared in the remark after Equation (1), which
gave the relation between the ψ󰄁 used in the current paper and the ones used in [11,
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Eq. 1.9]. Indeed, 1−z−1

1−z−1e−x󰄁1/2
ψ󰄁(−x, 1/z)−1 is exactly the series used in [11] where the factor

1−z−1

1−z−1e−x󰄁1/2
amounts to swapping the sign of B1 as done there. □

4. Elementary invariance properties

In this section, we review some basic choices needed to define the the Neumann–Zagier
data for a triangulation with N tetrahedra, namely:

(a) an ordering of the N tetrahedra,
(b) an ordering of the N edges,
(c) an edge equation to remove,
(d) a path to represent the meridian curve,
(e) a flattening.

A change of these choices changes the corresponding Neumann–Zagier data in a simple way,
which we now describe. Fix a triangulation and the choices needed to define Neumann–Zagier
data

Ξ = (A,B, ν, z, f, f ′′) . (65)

Regarding choice (a), suppose that σ ∈ SN is a permutation (and also the associated matrix)
of our labelling of the tetrahedra. Then the Neumann–Zagier matrices transform as follows

Ξ = (A,B, ν, z, f, f ′′) 󰀁→ (Aσ, Bσ, ν, σ−1z, σ−1f, σ−1f ′′) = Ξ · σ . (66)

This implies that the integrand fΞ
󰄁 (x, z) of Equation (4) and the quadratic form Λ of Equa-

tion (6) satisfy

fΞ·σ,󰄁(σ
−1x, σ−1z) = fΞ

󰄁 (x, z) ΛΞ·σ = σtΛΞσ , (67)

which combined with the fact that integration is invariant under a linear change of variables
(see part (a) of Lemma 3.1), implies that ΦΞ·σ(󰄁) = ΦΞ(󰄁).

Choices (b), (c) and (d) are a special case of the following transformation of P ∈ GLN( )
acting on Neumann–Zagier data via

Ξ = (A,B, ν, z, f, f ′′) 󰀁→ (PA, PB, Pν, z, f, f ′′) = P · Ξ . (68)

It follows that the integrand and the quadratic form satisfy

fP ·Ξ
󰄁 (x, z) = fΞ

󰄁 (x, z), ΛP ·Ξ = ΛΞ , (69)

which implies again that ΦΞ·σ(󰄁) = ΦΞ(󰄁).
Finally, if Ξ and 󰁨Ξ differ by a choice of flattening, then it is easy to see that

f
󰁨Ξ
󰄁 (x, z) = ec󰄁fΞ

󰄁 (x, z), Λ
󰁨Ξ = ΛΞ (70)

for some c ∈ 1
8

, which implies that Φ
󰁨Ξ(󰄁) = ec󰄁 ΦΞ(󰄁).
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5. Invariance under the choice of quad

The definition of the series ΦΞ(󰄁) requires some choices, some of which were described and
dealt with in the previous Section 4. What remains to complete the proof of Theorem 1.1 is
the independence of ΦΞ(󰄁) under the choice of a nondegenerate quad, and the independence
under the 2–3 Pachner moves that connect two ideal triangulations.

In this section, we will prove that ΦΞ(󰄁) is independent of the choice of a nondegenerate
quad. Recall that to each pair of opposite edges of an ideal tetrahedron there is an associated
variable called a shape variable. When defining Neumann–Zagier data (see Section 2.2), we
must choose an edge for each tetrahedron, which associates one of these shapes. There
are three possible choices, which leads to the action on /3 on the each column of the
Neumann–Zagier data. All in all, for a triangulation with N tetrahedra, this leads to 3N

choices on of Neumann–Zagier data. On the other hand, the definition of the series ΦΞ(󰄁)
requires a choice of a nondegenerate quad, i.e., one for which det(B) ∕= 0 (such quads always
exist [11, Lem.A.3]). In this section, we will show that any of the 3N choices of quad with
det(B) ∕= 0 lead to the same ΦΞ(󰄁) series.

Theorem 5.1. The series ΦΞ(󰄁) is independent of the choice of a nondegenerate quad.

Proof. Fix two non–degenerate NZ data Ξ = (A,B, ν, z, f, f ′′) and 󰁨Ξ = ( 󰁨A, 󰁨B, 󰁨ν, 󰁨z, 󰁨f, 󰁨f ′′)
related by a quad change of the same ideal triangulation. The nondegeneracy assumption

implies that det(B) ∕= 0 and det( 󰁨B) ∕= 0.
After reordering the tetrahedra (which does not change the ΦΞ(󰄁) series, as follows from

Section 4), we can assume that 󰁨Ξ is obtained by applying a change in quad that fixes the
first N0 shapes z

(0), replaces the next N1 shapes z
(1) by z′(1) and replaces the next N2 shapes

z(2) by z′(2). (Recall that z′ = 1/(1− z) and z′′ = 1− 1/z).

This partitions the shapes z = (z(0), z(1), z(2)) into three sets of size N0, N1, N2 and the
matrices A and B into three block matrices Ai and Bi of size N ×Ni for i = 0, 1, 2

A = (A0 |A1 |A2) , B = (B0 |B1 |B2) , (71)

and similarly for the flattening f = (f (0), f (1), f (2)) and f ′′ = (f ′′(0), f ′′(1), f ′′(2)). After the
quad moves, the corresponding matrices and vectors are given by

Ã = (A0 |− B1 |− A2 +B2) , B̃ = (B0 |A1 − B1 |− A2) ,

ν̃ = ν − B11− A21 , z̃ = (z(0), z′(1), z′′(2)) ,

f̃ = (f (0), 1− f (1) − f ′′(1), f ′′(2)) , f̃ ′′ = (f ′′(0), f (2), 1− f (2) − f ′′(2)) .

(72)

We also partition the vector of formal Gaussian integration variables x = (x(0), x(1), x(2)), as
well as the symmetric matrix Q := B−1A

Q =

󰀳

󰁃
Q00 Q01 Q02

Qt
01 Q11 Q12

Qt
02 Qt

12 Q22

󰀴

󰁄 . (73)

With the above notation, we have

ΦΞ(󰄁) = 〈I0〉x,Λ0 (74)
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where

I0 = exp
󰀓󰄁
8
f tB−1Af − 󰄁 1

2

2
xt(B−1ν − 1)

󰀔 N󰁜

j=1

ψ󰄁(xj, zj)

and
Λ0 = diag(z′)−Q .

Applying the first quad move as in Theorem 3.4 to the ψ󰄁 with arguments of z(1) and the
second quad move as in its Corollary 3.5 to the ψ󰄁 with arguments z(2), we obtain that

ΦΞ(󰄁) = 〈I1〉(x,y,w),Λ1 (75)

where

I1 = exp
󰀓󰄁
8
f tB−1Af − 󰄁 1

2

2
x(0)t(B−1ν − 1)(0) − N1󰄁

24
− 󰄁 1

2

2
x(1)t(B−1ν − 1)(1)

+

N1󰁛

j=1

󰀓
yj +

x
(1)
j z

(1)
j

1− z
(1)
j

󰀔󰄁 1
2

2
+

N2󰄁
24

− 󰄁 1
2

2
x(2)t(B−1ν − 1)(2) −

N2󰁛

j=1

x
(2)
j

󰄁 1
2

2

󰀔

×
N0󰁜

j=1

ψ󰄁(x
(0)
j , z

(0)
j )

N1󰁜

j=1

ψ󰄁

󰀓
yj +

x
(1)
j z

(1)
j

1− z
(1)
j

,
1

1− z
(1)
j

󰀔 N2󰁜

j=1

ψ󰄁

󰀓
wj −

x
(2)
j

1− z
(2)
j

, 1− z
(2)
j

−1
󰀔
,

y and w are vectors of size N1 and N2, respectively, and

Λ1 =

󰀳

󰁃
Λ 0 0
0 diag(z′′(1)) 0
0 0 diag(z(2))− I

󰀴

󰁄 .

Making the change of variables yj 󰀁→ yj −
x
(1)
j z

(1)
j

1−z
(1)
j

and wj 󰀁→ wj +
x
(2)
j

1−z
(2)
j

and using Lemma 3.1

we obtain that
ΦΞ(󰄁) = 〈I2〉(x,y,w),Λ2 (76)

where

I2 = exp
󰀓󰄁
8
f tB−1Af − 󰄁 1

2

2
x(0)t(B−1ν − 1)(0) − N1󰄁

24
− 󰄁 1

2

2
x(1)t(B−1ν − 1)(1)

+ yt1
󰄁 1

2

2
+

N2󰄁
24

− 󰄁 1
2

2
x(2)t(B−1ν)(2)

󰀔

×
N0󰁜

j=1

ψ󰄁(x
(0)
j , z

(0)
j )

N1󰁜

j=1

ψ󰄁

󰀓
yj,

1

1− z
(1)
j

󰀔 N2󰁜

j=1

ψ󰄁
󰀃
wj, 1− z

(2)
j

−1󰀄

and

Λ2 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

diag(z′(0))−Q00 −Q01 −Q02 0 0

−Qt
01 I −Q11 −Q12 I 0

−Qt
02 −Qt

12 −Q22 0 −I

0 I 0 diag(z′′(1)) 0

0 0 −I 0 diag(z(2))− I

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
.
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Note that x(1) and x(2) do not appear in the arguments of ψ󰄁. Moreover, since BQ = A, we
see that

B

󰀳

󰁃
I Q01 Q02

0 Q11 − I Q12

0 Qt
12 Q22

󰀴

󰁄

󰀳

󰁃
I 0 0
0 I 0
0 0 −I

󰀴

󰁄 = (B0 |A1 − B1 |− A2) = 󰁨B , (77)

which implies that

det

󰀕
Q11 − I Q12

Qt
12 Q22

󰀖
∕= 0 , and

󰀕
Q11 − I Q12

Qt
12 Q22

󰀖−1

=

󰀕
0 I 0
0 0 −I

󰀖
󰁨B−1B

󰀳

󰁃
0 0
I 0
0 I

󰀴

󰁄 .

(78)
Therefore, we can apply Fubini’s Theorem (Lemma 3.1) with the integration variables
x(1), x(2), and use Lemma 5.2 and the equality Qf + f ′′ = B−1ν to obtain that

ΦΞ(󰄁) = ec󰄁〈I3〉󰁨x,Λ3 . (79)

where 󰁨x = (x(0), y, w), c ∈ 1
24

I3 = exp
󰀓󰄁
8
󰁨f t 󰁨B−1 󰁨A 󰁨f − 󰄁 1

2

2
󰁨xt( 󰁨B−1󰁨ν − 1)

󰀔 N󰁜

j=1

ψ󰄁(󰁨xj, 󰁨zj)

and

Λ3 = diag(󰁨z′)− 󰁨B−1 󰁨A .

The right hand side of Equation (79) is exactly equal to ec󰄁Φ
󰁨Ξ(󰄁), completing the proof of

Theorem 5.1. □

Lemma 5.2. With the notation as in the proof of Theorem 5.1, we have the following
identities

󰁨B−1 󰁨A =

󰀳

󰁃
Q00 0 0
0 0 0
0 0 −I

󰀴

󰁄+

󰀳

󰁃
Q01 Q02

−I 0
0 I

󰀴

󰁄
󰀕
Q11 − I Q12

Qt
12 Q22

󰀖−1 󰀕
Qt

01 −I 0
Qt

02 0 I

󰀖
, (80)

󰁨B−1󰁨ν − 1 =

󰀳

󰁃
I 0 0
0 0 0
0 0 0

󰀴

󰁄 (B−1ν − 1)−

󰀳

󰁃
0
1
0

󰀴

󰁄

+

󰀳

󰁃
−Q01 −Q02

I 0
0 −I

󰀴

󰁄
󰀕
Q11 − I Q12

Qt
12 Q22

󰀖−1 󰀕󰀕
0 I 0
0 0 I

󰀖
B−1ν −

󰀕
1
0

󰀖󰀖
(81)

and for some d ∈
󰁨f 󰁨B−1󰁨ν = f tB−1ν + d

−
󰀓
(B−1ν)t

󰀳

󰁃
0 0
I 0
0 I

󰀴

󰁄−
󰀃
1 0

󰀄 󰀔󰀕
Q11 − I Q12

Qt
12 Q22

󰀖−1 󰀕󰀕
0 I 0
0 0 I

󰀖
B−1ν −

󰀕
1
0

󰀖󰀖
.

(82)
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Proof. We will show that boths sides of Equation (80) and Equation (81) are equal after

multiplying by the invertible matrix 󰁨B. Denote

󰀕
Q11 − I Q12

Qt
12 Q22

󰀖−1

=

󰀕
Γ11 Γ12

Γt
12 Γ22

󰀖
, (83)

and note that

󰁨B

󰀳

󰁃
−Q01 −Q02

I 0
0 −I

󰀴

󰁄
󰀕
Q11 − I Q12

Qt
12 Q22

󰀖−1

= 󰁨B

󰀳

󰁃
−Q01Γ11 −Q02Γt

12 −Q01Γ12 −Q02Γ22

Γ11 Γ12

−Γt
12 −Γ22

󰀴

󰁄

= (−B0Q01Γ11 −B0Q02Γ
t
12 + (A1 −B1)Γ11 +A2Γ

t
12 | −B0Q01Γ12 −B0Q02Γ22 + (A1 −B1)Γ12 +A2Γ22)

= ((B1(Q11 − I) +B2Q
t
12)Γ11 + (B1Q12 +B2Q22)Γ

t
12 | (B1(Q11 − I) +B2Q

t
12)Γ12 + (B1Q12 +B2Q22)Γ22)

= (B1 | B2) .

(84)

Therefore, since

󰁨B

󰀳

󰁃
Q00 0 0
0 0 0
0 0 −I

󰀴

󰁄 = (B0Q00 | 0 |− A2) , (85)

we see that multiplying the right hand side of Equations (80) on the left by 󰁨B we have

(B0Q00 +B1Q
t
01 +B2Q

t
02 |− B1 |− A2 +B2) = 󰁨A , (86)

which completes the proof of Equation (80). Similarly, since

󰁨B

󰀳

󰁃
I 0 0
0 0 0
0 0 0

󰀴

󰁄 (B−1ν − 1)− 󰁨B

󰀳

󰁃
0
1
0

󰀴

󰁄 = B0(B
−1ν)(0) − B01− A11 +B11 (87)

we see that multiplying the right hand side of Equations (81) on the left by 󰁨B we have

B0(B
−1ν)(0) − B01− A11 +B11 +B1(B

−1ν)(1) − B11 +B2(B
−1ν)(2) = 󰁨ν − 󰁨B1 , (88)

which completes the proof of Equation (81). For Equation (82), we will compute the three
terms that appear there. Firstly, use Equation (81) to obtain that

󰀕
0 I 0
0 0 −I

󰀖
( 󰁨B−1󰁨ν−1) = −

󰀕
1
0

󰀖
+

󰀕
Q11 − I Q12

Qt
12 Q22

󰀖−1 󰀕󰀕
0 I 0
0 0 I

󰀖
B−1ν −

󰀕
1
0

󰀖󰀖
, (89)

to obtain that
󰀳

󰁃(B−1ν)t

󰀳

󰁃
0 0
I 0
0 I

󰀴

󰁄−
󰀃
1 0

󰀄
󰀴

󰁄
󰀕󰀕

0 I 0
0 0 −I

󰀖
( 󰁨B−1󰁨ν − 1) +

󰀕
1
0

󰀖󰀖

= ((B−1ν)(1)
t − 1)( 󰁨B−1󰁨ν)(1) − (B−1ν)(2)

t
( 󰁨B−1󰁨ν)(2) + (B−1ν)(2)

t
1 .

(90)
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Secondly, expanding out

󰁨f t 󰁨B−1󰁨ν = f (0)( 󰁨B−1󰁨ν)(0) + (1− f (1) − f ′′(1))( 󰁨B−1󰁨ν)(1) + f ′′(2)( 󰁨B−1󰁨ν)(2)

= f (0)( 󰁨B−1󰁨ν)(0)

+ (1− f (1) − (B−1ν)(1)
t
+ f (0)Q01 + f (1)Q11 + f (2)Qt

12)( 󰁨B−1󰁨ν)(1)

+ ((B−1ν)(2)
t − f (0)Q02 − f (1)Q12 − f (2)Q22)( 󰁨B−1󰁨ν)(2) .

(91)

Finally, using Equation (77) we obtain that

f tB−1ν − f (1)1 + f ′′(2)1 = f tB−1ν − f (1)1− f tQ(0, 0, 1)t + (B−1ν)(2)
t
1

= f tB−1󰁨ν + (B−1ν)(2)
t
1

= f (0)( 󰁨B−1󰁨ν)(0)

+ (f (0)Q01 + f (1)(Q11 − I) + f (2)Qt
12)( 󰁨B−1󰁨ν)(1)

− (f (0)Q02 + f (1)Q12 + f (2)Q22)( 󰁨B−1󰁨ν)(2) + (B−1ν)(2)
t
1 .

(92)

□

6. Invariance under Pachner moves

In this section, we will prove that ΦΞ is invariant under 2–3 Pachner moves. There are
several versions of the 2–3 move (and of the corresponding pentagon identity in Teichmüller
TQFT [27]) and the one we choose in the next theorem is slightly different from the one
in [11, Sec.3.6] and can be related by composing with quad moves.

The 2–3 move involves two triangulations T and 󰁨T with N + 2 and N + 3 tetrahedra,
respectively, shown in Figure 2.

z1 z′1

z′′1

z2

z′2z′′2

󰁨z0

󰁨z′0

󰁨z′′0
󰁨z1

󰁨z′1

󰁨z′′1󰁨z2
󰁨z′′2

󰁨z′2

Figure 2. The 2–3 Pachner move.

Using z0 = z1+ z2− z1z2 from Equation (46) used in Theorem 3.6, it follows that the shapes

z of T and 󰁨z of 󰁨T are related by

z = (z1, z2, z
∗) 󰀁→ 󰁨z =

󰀃
󰁨z0, 󰁨z1, 󰁨z2, 󰁨z∗

󰀄

=
󰀃
z0, z1z

−1
0 , z2z

−1
0 , z∗

󰀄
.

(93)
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Similarly to [11, Eq. (3.20) and (3.21)], these shapes satisfy the relations

󰁨z′0 = z′1z
′
2 , 󰁨z′′1 = z′′1z2 , 󰁨z′′2 = z1z

′′
2 ,

z1 = 󰁨z0󰁨z1 , z′1 = 󰁨z′1󰁨z2 , z′′1 = 󰁨z′′0󰁨z′2 ,
z2 = 󰁨z0󰁨z2 , z′2 = 󰁨z1󰁨z′2 , z′′2 = 󰁨z′′0󰁨z′1 .

(94)

If we write the Neumann–Zagier matrices of T in the form

A = (a1 | a2 | a∗) , B = (b1 | b2 | b∗) , (95)

where a1, a2 are the first two columns of A and a∗ is the block (N + 2) × N matrix of the
remaining N columns of A, and likewise for B, then using Equations (94) the corresponding

Neumann–Zagier matrices of 󰁨T are given by

󰁨A =

󰀕
−1 0 0 0

−b1 − b2 + a1 + a2 a1 − b2 a2 − b1 a∗

󰀖
, 󰁨B =

󰀕
−1 1 1 0
0 b1 b2 b∗

󰀖
(96)

and the corresponding vector 󰁨ν = (1, ν). Analogously to the shapes, we will fix flattenings

( 󰁨f0, 󰁨f1, 󰁨f2, 󰁨f ∗) and ( 󰁨f ′′
0 ,

󰁨f ′′
1 ,

󰁨f ′′
2 ,

󰁨f ′′∗) for ( 󰁨A | 󰁨B) and (f1, f2, f
∗) = ( 󰁨f0 + 󰁨f1, 󰁨f0 + 󰁨f2, f ∗) and

(f ′′
1 , f

′′
2 , f

′′∗) = ( 󰁨f ′′
0 + 󰁨f ′

2,
󰁨f ′′
0 + 󰁨f ′

1, f
′′∗) for (A |B). The data of the flattenings then satisfy the

additive versions of Equations (94).

Theorem 6.1. The series ΦΞ(󰄁) is invariant under 2–3 Pachner moves.

The proof involves an application of the pentagon identity for ψ󰄁 of Theorem 3.6.

For two triangulations T and 󰁨T with N+2 and N+3 tetrahedra and NZ matrices (A |B),
respectively, related by a Pachner 2–3 move. To define the corresponding series ΦΞ(󰄁) and
Φ

󰁨Ξ(󰄁), we need to possibly change quads on T and 󰁨T so that both B and 󰁨B are invertible.
By a quad move q, we can replace (A |B) by (A |B) where det(B) ∕= 0. Recalling that quad
moves act on tetrahedra and actions on different tetrahedra commute, we can write the move
q = q2 × qN as a product of quad moves q2 on the first 2 tetrahedra times moves qN on the
remaining N tetrahedra of T . Let (A |B) denote the result of applying the move 1× qN on
the N + 2 tetrahedra of T .

Since the (N + 2) × (N + 2) matrix B has full rank and B and B have the same last N
columns, it follows that B has nullity 0, 1 or 2.

Now on 󰁨T , we can apply the identity move on the first three tetrahedra and the qN moves

on the remaining N tetrahedra, which transforms the NZ matrices ( 󰁨A | 󰁨B) to ( 󰁨A | 󰁨B), and
further apply the q2 moves on the second and third tetrahedra to obtain the NZ matrices

(󰁨A | 󰁨B). By looking at how the matrix B transforms under a 2–3 move (see Equation (96)),

it follows that 󰁨B has the same rank as B, and hence det(󰁨B) ∕= 0.
The above discussion can be summarized in the following commutative diagram.
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(A | B) ( 󰁨A | 󰁨B)

(A | B) ( 󰁨A | 󰁨B)

(A | B) (󰁨A | 󰁨B)

2→3

1×qN

q2×qN

1×1×qN

1×q2×qN
2→3

q2×1

1×q2×1

(97)

where det(B) ∕= 0 and det(󰁨B) ∕= 0. Now ΦΞ(󰄁) and Φ
󰁨Ξ(󰄁) can be defined using the non-

degenerate NZ data with matrices (A |B) and (󰁨A | 󰁨B), respectively. We will show that the
two 󰄁-series are equal using a diagram

ΦΞ(󰄁) • • • Φ
󰁨Ξ(󰄁)⊗iFourier Pentagon ⊗iFourier−1 2i−Fubini

(98)

where i = 0, 1, 2 denotes the nullity of B. We will treat each case in a separate section.
With this discussion the Theorem 6.1 follows from Propositions 6.2, 6.4, and 6.6. Before
proceeding with the proof, we will set some notation. Similarly to the proof of the quad
invariance, denote Q = B−1A

Q =

󰀳

󰁅󰁃
Q11 Q12 Q∗

1

Q12 Q22 Q∗
2

Q∗
1
t Q∗

2
t Q∗

󰀴

󰁆󰁄 , (99)

where Qij are matrices of size 1 × 1, Q∗
j are matrices of size 1 × N and Q∗ is a matrix of

size N ×N .

6.1. The case of B with full rank. In this section, we prove Theorem 3.6 under the
assumption that the matrix B has full rank. In this case, Equation (98) simplifies to the
following one

ΦΞ(󰄁) Φ
󰁨Ξ(󰄁)Pentagon

(100)

since we do not need to apply Fourier transform, nor Fubini’s theorem.

Proposition 6.2. If B has full rank, then ΦΞ(󰄁) is invariant under the 2–3 Pachner move
given in Equation (96).

Proof. To begin with, noting that in this case A = A and B = B, we have:

ΦΞ(󰄁) = 〈I0〉x,Λ (101)

where

I0 = exp
󰀓󰄁
8
f tB−1Af − 󰄁 1

2

2
xt(B−1ν − 1)

󰀔N+2󰁜

j=1

ψ󰄁(xj, zj)

and

Λ0 = diag(z′)−Q
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and x = (x1, x2, x
∗) are the integration variables. Applying the pentagon identity of Theo-

rem 3.6, to the ψ󰄁 with arguments x1, x2 and introducing a new integration variable x0, we
obtain that

ΦΞ(󰄁) = 〈I1〉(x0,x),Λ1 (102)

where

I1 = exp
󰀓
− 󰄁

24
+

󰄁
8
f tB−1Af − 󰄁

1
2

2
xt(B−1ν − 1)

󰀔
ψ󰄁

󰀓
− x0 − x2 +

x1z2 + x2z1
z0

, z1z
−1
0

󰀔

× ψ󰄁

󰀓
x0 + x1 + x2 −

x1z2 + x2z1
z0

, z0

󰀔
ψ󰄁

󰀓
− x0 − x1 +

x1z2 + x2z1
z0

, z2z
−1
0

󰀔 N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and

Λ1 =

󰀣
(z1+z2−z1z2)2

(z1−1)z1(z2−1)z2
0

0 Λ

󰀤
.

Making a change of variables x0 󰀁→ x0 + x1(−1 + z2z
−1
0 ) + x2(−1 + z1z

−1
0 ) using Lemma 3.1,

we obtain that
ΦΞ(󰄁) = 〈I2〉(x0,x),Λ2 , (103)

where

I2 = exp
󰀓
− 󰄁

24
+

󰄁
8
f tB−1Af − 󰄁 1

2

2
xt(B−1ν − 1)

󰀔
ψ󰄁(−x0 + x1, z1z

−1
0 )

× ψ󰄁(x0, z0)ψ󰄁(−x0 + x2, z2z
−1
0 )

N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and

Λ2 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

(z1+z2−z1z2)2

(z1−1)z1(z2−1)z2

z1+z2−z1z2
z2(z1−1)

z1+z2−z1z2
z1(z2−1)

0

z1+z2−z1z2
z2(z1−1)

−Q11− z1+z2−z1z2
z2(z1−1)

1−Q12 −Q∗
1

z1+z2−z1z2
z1(z2−1)

1−Q12 −Q22− z1+z2−z1z2
z1(z2−1)

−Q∗
2

0 −Q∗
1
t −Q∗

2
t diag(z∗′)−Q∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
.

Making a change of variables x1 󰀁→ x1+x0 and x2 󰀁→ x2+x0 using Lemma 3.1, and denoting
󰁨x = (x0, x), 󰁨z = (z0, z1z

−1
0 , z2z

−1
0 , z∗) we obtain that

ΦΞ(󰄁) = ec󰄁〈I3〉󰁨x,Λ3 , (104)

where

I3 = exp
󰀓󰄁
8
󰁨f t 󰁨B−1 󰁨A 󰁨f − 󰄁 1

2

2
󰁨xt( 󰁨B−1󰁨ν − 1)

󰀔N+3󰁜

j=1

ψ󰄁(󰁨xj, 󰁨zj)

and
Λ3 = diag(z̃′)− B̃−1Ã .

□
The next lemma identifies vectors and matrices of the two triangulations T and 󰁨T .
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Lemma 6.3. With the notation used in the proof of the previous Proposition 6.2,

󰁨B−1 󰁨A =

󰀳

󰁅󰁅󰁅󰁅󰁃

Q11 + 2Q12 +Q22 − 1 Q11 +Q12 − 1 Q12 +Q22 − 1 Q∗
1 +Q∗

2

Q11 +Q12 − 1 Q11 Q12 − 1 Q∗
1

Q12 +Q22 − 1 Q12 − 1 Q22 Q∗
2

Q∗
1
t +Q∗

2
t Q∗

1
t Q∗

2
t Q∗

󰀴

󰁆󰁆󰁆󰁆󰁄
(105)

󰁨B−1󰁨ν =

󰀕
(B−1ν)1 + (B−1ν)2 − 1

B−1ν

󰀖
(106)

󰁨f t 󰁨B−1󰁨ν = f tB−1ν − 󰁨f0 (107)

Proof. We will show that both sides of Equations (105) and Equations (106) are equal after

multiplying by the invertible matrix 󰁨B. For Equation (105), we have

󰀕
−1 1 1 0
0 b1 b2 b∗

󰀖

󰀳

󰁅󰁅󰁅󰁅󰁃

Q11 + 2Q12 +Q22 − 1 Q11 +Q12 − 1 Q12 +Q22 − 1 Q∗
1 +Q∗

2

Q11 +Q12 − 1 Q11 Q12 − 1 Q∗
1

Q12 +Q22 − 1 Q12 − 1 Q22 Q∗
2

Q∗
1
t +Q∗

2
t Q∗

1
t Q∗

2
t Q∗

󰀴

󰁆󰁆󰁆󰁆󰁄

=

󰀣
−1 0 0 0

b1(−1+Q11+Q12)+b∗Q∗
1
t

+b2(−1+Q12+Q22)+b∗Q∗
2
t

b1Q11+b∗Q∗
1
t

+b2(−1+Q12)
b2Q22+b∗Q∗

2
t

+b1(−1+Q12)
b1Q

∗
1 + b2Q

∗
2 + b∗Q∗

󰀤

= 󰁨A.
(108)

For Equation (106), we have
󰀕
−1 1 1 0
0 b1 b2 b∗

󰀖󰀕
(B−1ν)1 + (B−1ν)2 − 1

B−1ν

󰀖
=

󰀕
1
ν

󰀖
. (109)

Finally, for Equation (107),

󰁨f t 󰁨B−1ν = 󰁨f t

󰀕
(B−1ν)1 + (B−1ν)2 − 1

B−1ν

󰀖

= ( 󰁨f0 + 󰁨f1)(B−1ν)1 + ( 󰁨f0 + 󰁨f2)(B−1ν)2 + f ∗(B−1ν)1 − 󰁨f0 ,
(110)

and we recall we choose fi = 󰁨f0 + 󰁨fi for i = 1, 2. □
6.2. The case of B with nullity one. In this section, we prove Theorem 3.6 under the
assumption that the matrix B has nullity 1. In this case, starting from the series ΦΞ(󰄁), there
are three intermediate formulas (shown as bullets) in Equation (98) that eventually iden-

tify the result with Φ
󰁨Ξ(󰄁). The intermediate formulas involve a Fourier transform (adding

one integration variable), a pentagon (adding a second variable), an inverse Fourier trans-
form (adding a third), and an application of Fubini’s theorem that removes two integration
variables. The detailed computation is given in the next proposition.

Proposition 6.4. If B has rank N +1 then ΦΞ(󰄁) is invariant under the 2–3 Pachner move
given in Equation (98).
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Proof. Following the discussion above we can assume that rank(b1 | b2 | b∗) = rank(b2 | b∗) =
N +1. Then by [11, Lem.A.3], the matrix (a1 | b2 | b∗) has full rank and we can apply a quad
move to the first columns of (A |B) to obtain

A = (−b1 | a2 | a∗) , B = (a1 − b1 | b2 | b∗) , ν = ν − b1 , (111)

where B has full rank. The proof will use the following sequence of intermediate matrices

(A |B |ν) =
󰀃
−b1 a2 a∗ a1 − b1 b2 b∗ ν − b1

󰀄

q−1
1 × 1

(A |B | ν) =
󰀃
a1 a2 a∗ b1 b2 b∗ ν

󰀄

2 → 3

( 󰁨A | 󰁨B | 󰁨ν) =

󰀕
−1 0 0 0 −1 1 1 0 1

a1 + a2 − b1 − b2 a1 − b2 a2 − b1 a∗ 0 b1 b2 b∗ ν

󰀖

1× q1 × 1

(󰁨A | 󰁨B | 󰁨ν) =

󰀕
−1 −1 0 0 −1 −1 1 0 0

a1 + a2 − b1 − b2 −b1 a2 − b1 a∗ 0 a1 − b1 − b2 b2 b∗ ν − b1

󰀖

(112)

where B and 󰁨B are invertible. With x = (x1, x2, x
∗) and z = (z1, z2, z

∗) vectors of size N+2,
ΦΞ(󰄁) is defined by

ΦΞ(󰄁) = 〈I0〉(x1,x2,x∗),Λ0 (113)

where with f = (f ′
1, f2, f

∗)

I0 = exp
󰀓󰄁
8
f tB−1Af − 󰄁 1

2

2
x(B−1ν − 1)

󰀔
ψ󰄁

󰀓
x1,

1

1− z1

󰀔
ψ󰄁(x2, z2)

N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and

Λ0 = diag(z′′1 , z
′
2, z

∗′)−Q .

We apply Corollary 3.5 to the ψ󰄁 with argument x1 and introduce a new variable w1 to
obtain

ΦΞ(󰄁) = 〈I1〉(w1,x1,x2,x∗),Λ1 (114)

where

I1 = exp
󰀓 󰄁
24

+
󰄁
8
f tB−1Af − 󰄁 1

2

2
x(B−1ν − 1)− x1

󰄁 1
2

2

󰀔

× ψ󰄁

󰀓
w1 − x1(1− z−1

1 ), z1

󰀔
ψ󰄁(x2, z2)

N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )
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and

Λ1 =

󰀕
z1

1−z1
0

0 Λ

󰀖
.

We substitute w1 󰀁→ w1 + x1(1− z−1
1 ) and obtain, from Lemma 3.1, that

ΦΞ(󰄁) = 〈I2〉(w1,x1,x2,x∗),Λ2 (115)

where

I2 = exp
󰀓 󰄁
24

+
󰄁
8
f tB−1Af − 󰄁 1

2

2
x(B−1ν − 1)− x1

󰄁 1
2

2

󰀔
ψ󰄁(w1, z1)ψ󰄁(x2, z2)

N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and with Q11 = 0 from Lemma 6.5

Λ2 =

󰀳

󰁅󰁅󰁅󰁃

z1
1−z1

−1 0 0

−1 0 −Q12 −Q∗
1

0 −Q12
1

1−z2
−Q22 −Q∗

2

0 −Q∗
1
t −Q∗

2
t z∗′ −Q∗

󰀴

󰁆󰁆󰁆󰁄
.

We apply the pentagon identity of Theorem 3.6 to the ψh with arguments w1 and x1 and
obtain, with the new integration variable x0, that

ΦΞ(󰄁) = 〈I3〉(x0,w1,x1,x2,x∗),Λ3 (116)

where

I3 = exp
󰀓󰄁
8
f tB−1Af − 󰄁 1

2

2
x(B−1ν − 1)− x1

󰄁 1
2

2

󰀔
ψ󰄁

󰀓
− x0 − x2 +

w1z2 + x2z1
z0

, z1z
−1
0

󰀔

ψ󰄁

󰀓
x0 + w1 + x2 −

w1z2 + x2z1
z0

, z0

󰀔
ψ󰄁

󰀓
− x0 − w1 +

w1z2 + x2z1
z0

, z2z
−1
0

󰀔 N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and

Λ3 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

(z1+z2−z1z2)2

(z1−1)z1(z2−1)z2
0 0 0 0

0 z1
1−z1

−1 0 0

0 −1 0 −Q12 −Q∗
1

0 0 −Q12
1

1−z2
−Q22 −Q∗

2

0 0 −Q∗
1
t −Q∗

2
t z∗′ −Q∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
.

We use Lemma 3.1 to change the variables x0 󰀁→ x0 − w1 − x2 +
w1z2+x2z1

z0
and obtain that

ΦΞ(󰄁) = 〈I4〉(x0,w1,x1,x2,x∗),Λ4 (117)

where

I4 = exp
󰀓󰄁
8
f tB−1Af − 󰄁 1

2

2
x(B−1ν − 1)− x1

󰄁 1
2

2

󰀔

× ψ󰄁(−x0 + w1, z1z
−1
0 )ψ󰄁(x0, z0)ψ󰄁(−x0 + x2, z2z

−1
0 )

N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )
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and

Λ4 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

(z1+z2−z1z2)2

(z1−1)z1(z2−1)z2

z1+z2−z1z2
(z1−1)z2

0 z1+z2−z1z2
z1(z2−1)

0
z1+z2−z1z2
(z1−1)z2

z1
z2(1−z1)

−1 1 0

0 −1 0 −Q12 −Q∗
1

z1+z2−z1z2
z1(z2−1)

1 −Q12 −Q22 − z1+z2−z1z2
z1(z2−1)

−Q∗
2

0 0 −Q∗
1
t −Q∗

2
t z∗′ −Q∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
.

We substitute w1 󰀁→ w1 + x0 and x2 󰀁→ x2 + x0 to obtain, with Lemma 3.1, that

ΦΞ(󰄁) = 〈I5〉(x0,w1,x1,x2,x∗),Λ5 (118)

where

I5 = exp
󰀓󰄁
8
f tB−1Af − 󰄁 1

2

2
x(B−1ν − 1)− 󰄁 1

2

2
x0(B

−1ν2 − 1)− x1
󰄁 1

2

2

󰀔

× ψ󰄁(w1, z1z
−1
0 )ψ󰄁(x0, z0)ψ󰄁(x2, z2z

−1
0 )

N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and

Λ5 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

−Q22 +
1

(z1−1)(z2−1)
0 −1−Q12 1−Q22 −Q∗

2

0 z1
z2(1−z1)

−1 1 0

−1−Q12 −1 0 −Q12 −Q∗
1

1−Q22 1 −Q12 −Q22 +
z1+z2−z1z2
z1(z2−1)

−Q∗
2

−Q∗
2
t 0 −Q∗

1
t −Q∗

2
t z∗′ −Q∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
.

By applying the first quad move from Theorem 3.4 to ψ󰄁(w1, z1z
−1
0 ) we obtain, with a new

integration variable y1, that

ΦΞ(󰄁) = e−
󰄁
24 〈I6〉(y1,x0,w1,x1,x2,x∗),Λ6

(119)

where

I6 = exp
󰀓
− 󰄁

24
+

󰄁
8
f tB−1Af − 󰄁 1

2

2
x(B−1ν − 1)

− 󰄁 1
2

2
x0((B

−1ν)2 − 1)− x1
󰄁 1

2

2
+
󰀓
y1 +

w1z1z
−1
0

1− z1z
−1
0

󰀔󰄁 1
2

2

󰀔

× ψ󰄁

󰀓
y1 +

w1z1z
−1
0

1− z1z
−1
0

,
1

1− z1z
−1
0

󰀔
ψ󰄁(x0, z0)ψ󰄁(x2, z2z

−1
0 )

N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )
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and

Λ6 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

(z1−1)z2
z1

0 0 0 0 0

0 −Q22 +
1

(z1−1)(z2−1) 0 −1−Q12 1−Q22 −Q∗
2

0 0 z1
z2(1−z1)

−1 1 0

0 −1−Q12 −1 0 −Q12 −Q∗
1

0 1−Q22 1 −Q12 −Q22 +
z1+z2−z1z2
z1(z2−1) −Q∗

2

0 −Q∗
2
t 0 −Q∗

1
t −Q∗

2
t z∗′ −Q∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

We change variables y1 󰀁→ y1 − w1
z1z

−1
0

1−z1z
−1
0

using Lemma 3.1 and obtain that

ΦΞ(󰄁) = 〈I7〉(y1,x0,w1,x1,x2,x∗),Λ7 (120)

where

I7 = exp
󰀓
− 󰄁

24
+

󰄁
8
f tB−1Af − 󰄁 1

2

2
x(B−1ν − 1)− 󰄁 1

2

2
x0((B

−1ν)2 − 1)− x1
󰄁 1

2

2
+ y1

󰄁 1
2

2

󰀔

× ψ󰄁

󰀓
y1,

1

1− z1z
−1
0

󰀔
ψ󰄁(x0, z0)ψ󰄁(x2, z2z

−1
0 )

N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and

Λ7 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

(z1−1)z2
z1

0 1 0 0 0

0 −Q22 +
1

(z1−1)(z2−1)
0 −1−Q12 1−Q22 −Q∗

2

1 0 0 −1 1 0

0 −1−Q12 −1 0 −Q12 −Q∗
1

0 1−Q22 1 −Q12 −Q22 +
z1+z2−z1z2
z1(z2−1)

−Q∗
2

0 −Q∗
2
t 0 −Q∗

1
t −Q∗

2
t z∗′ −Q∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

Therefore, we can apply Fubini’s Theorem (Lemma 3.1) with the integration variables w1, x1,
to obtain that

ΦΞ(󰄁) = 〈I8〉(y1,x0,x2,x∗),Λ8 (121)

where

I8 = exp
󰀓
− 󰄁

24
+

󰄁
8
f tB−1Af − 󰄁 1

2

2
(x0((B

−1ν)2 − 1) + y1((B
−1ν)1 − 1)

+ x2((B
−1ν)2 + (B−1ν)1 − 1) + x∗((B−1ν)∗ − 1))

󰀔

× ψ󰄁

󰀓
y1,

1

1− z1z
−1
0

󰀔
ψ󰄁(x0, z0)ψ󰄁(x2, z2z

−1
0 )

N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and

Λ8 =

󰀳

󰁅󰁅󰁅󰁃

(z1−1)z2
z1

−Q12 − 1 −Q12 −Q∗
1

−Q12 − 1 1
(z1−1)(z2−1)

−Q22 −Q12 −Q22 −Q∗
2

−Q12 −Q12 −Q22 −2Q12 −Q22 +
z1+z2−z1z2
z1(1−z2)

−Q∗
1 −Q∗

2

−Q∗
1
t −Q∗

2
t −Q∗

1
t −Q∗

2
t z∗′ −Q∗

󰀴

󰁆󰁆󰁆󰁄
.
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Using Lemma 6.5 we obtain, with respect to the integration variables x̃ = (x0, y1, x2, x
∗) and

some c ∈ 1
24

, that

ΦΞ(󰄁) = ec󰄁〈I9〉x̃,Λ9 (122)

where

I9 = exp
󰀓󰄁
8
󰁨f t󰁨B−1 󰁨A󰁨f − 󰄁 1

2

2
x̃t(󰁨B−1󰁨ν − 1)

󰀔 N+2󰁜

j=0

ψ󰄁(󰁨x∗
j , 󰁨z∗j )

and with 󰁨A, 󰁨B as in (112)

Λ9 = diag(󰁨z′0, 󰁨z′′1 , 󰁨z′2, 󰁨z∗′)− 󰁨B−1 󰁨A.

□

Lemma 6.5. With the notation used in the previous proof of Proposition 6.4 we have
Q11 = 0 and the following equalities:

󰁨B−1 󰁨A =

󰀳

󰁅󰁅󰁃

Q22 Q12 + 1 Q12 +Q22 Q∗
2

Q12 + 1 0 Q12 Q∗
1

Q12 +Q22 Q12 2Q12 +Q22 Q∗
1 +Q∗

2

Q∗
2
t Q∗

1
t Q∗

1
t +Q∗

2
t Q∗

󰀴

󰁆󰁆󰁄 , (123)

󰁨B−1󰁨ν =

󰀳

󰁅󰁅󰁃

(B−1ν)2
(B−1ν)1

(B−1ν)1 + (B−1ν)2
(B−1ν)∗

󰀴

󰁆󰁆󰁄 , (124)

󰁨f t󰁨B−1󰁨ν = f tB−1ν . (125)

Proof. Similarly to the proof of Lemma 6.3 we will proof Equations (123) and (124) by

showing that both sides are equal after multiplying by the invertible matrix 󰁨B. Using
Q = B−1A and the fact that (a1 | b2 | b∗) are linearly independent we conclude Q11 = 0. For
(123) we compute

󰀕
−1 −1 1 0
0 a1 − b1 − b2 b2 b∗

󰀖
󰀳

󰁅󰁅󰁃

Q22 Q12 + 1 Q12 +Q22 Q∗
2

Q12 + 1 0 Q12 Q∗
1

Q12 +Q22 Q12 2Q12 +Q22 Q∗
1 +Q∗

2

Q∗
2
t Q∗

1
t Q∗

1
t +Q∗

2
t Q∗

󰀴

󰁆󰁆󰁄

=

󰀣
−1 −1 0 0

(a1−b1)Q12

+b2Q22+b∗Q∗
2
t b2Q12+b∗Q∗

1
t b2Q12+b∗Q∗

1
t+

(a1−b1)Q12+b2Q22+b∗Q∗
1
t

(a1−b1−b2)Q∗
1

+b2(Q∗
1+Q∗

2)+b∗Q∗

󰀤

= 󰁨A

(126)
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For (124) we have

󰀕
−1 −1 1 0
0 a1 − b1 − b2 b2 b∗

󰀖
󰀳

󰁅󰁅󰁃

(B−1ν)2
(B−1ν)1

(B−1ν)1 + (B−1ν)2
(B−1ν)∗

󰀴

󰁆󰁆󰁄

=

󰀕
0
ν

󰀖
(127)

For Equation (125), we have

󰁨f t

󰀳

󰁅󰁅󰁃

(B−1ν)2
(B−1ν)1

(B−1ν)1 + (B−1ν)2
(B−1ν)∗

󰀴

󰁆󰁆󰁄

= ( 󰁨f ′
1 +

󰁨f2)(B−1ν)1 + ( 󰁨f0 − 󰁨f2)(B−1ν)2 + 󰁨f ∗(B−1ν)∗ .

(128)

Then, using the analogous relations between the flattening as given in Equation (94) for the

shapes, we have 󰁨f ′
1 +

󰁨f2 = f ′
1 = f1 and 󰁨f0 − 󰁨f2 = f2 = f2. □

6.3. The case of B with nullity two. In this section, we prove Theorem 3.6 under the
assumption that the matrix B has nullity 2. Similarly to the proof of Proposition 6.4, we use
three intermediate formulas in Equation (98). They involve two Fourier transforms (adding
two variables), a pentagon (adding a third variable), two inverse Fourier transforms (adding
two variables) and an applications of Fubini’s Theorem (removing four integration variables).
The details are given in the following proposition.

Proposition 6.6. If B has rank N then ΦΞ(󰄁) is invariant under the 2–3 Pachner move
given in Equation (98).

Proof. Following the discussion above, we can assume that rank(b1 | b2 | b∗) = rank( b∗) = N .
Then by [11, Lem.A.3], the matrix (a1 − b1 | a2 − b2 | b∗) has full rank and we can apply a
quad move to the first columns of (A |B) to obtain

A = (−b1 | − b2 | a∗), B = (a1 − b1 | a2 − b2 | b∗) (129)
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where B has full rank. The proof will use the following sequence of intermediate matrices

(A |B |ν) =
󰀃
−b1 −b2 a∗ a1 − b1 a2 − b2 b∗ ν − b1 − b2

󰀄

q−1
2 × 1

(A |B | ν) =
󰀃
a1 a2 a∗ b1 b2 b∗ ν

󰀄

2 → 3

( 󰁨A | 󰁨B | 󰁨ν) =

󰀕
−1 0 0 0 −1 1 1 0 1

a1 + a2 − b1 − b2 a1 − b2 a2 − b1 a∗ 0 b1 b2 b∗ ν

󰀖

1× q2 × 1

(󰁨A | 󰁨B | 󰁨ν) =
󰀕

−1 −1 −1 0 −1 −1 −1 0 −1
a1 + a2 − b1 − b2 −b1 −b2 a∗ 0 a1 − b1 − b2 a2 − b1 − b2 b∗ ν − b1 − b2

󰀖

(130)

where B and 󰁨B are invertible. With x = (x1, x2, x
∗) and z = (z1, z2, z

∗) vectors of size N+2,
ΦΞ(󰄁) is defined by

ΦΞ(󰄁) = 〈I0〉(x1,x2,x∗),Λ0 (131)

where with f = (f ′
1, f

′
2, f

∗)

I0 = exp
󰀓󰄁
8
f tB−1Af − 󰄁 1

2

2
xt(B−1ν − 1)

󰀔

× ψ󰄁

󰀓
x1,

1

1− z1

󰀔
ψ󰄁

󰀓
x2,

1

1− z2

󰀔 N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and

Λ0 = diag(1− z−1
1 , 1− z−1

2 , z∗′)−Q .

By applying Corollary 3.5 to both ψ󰄁(x1,
1

1−z1
) and ψ󰄁(x1,

1
1−z1

) we obtain with new integra-
tion variables w1 and w2 that

ΦΞ(󰄁) = 〈I1〉(w1,w2,x1,x2,x∗),Λ1 (132)

where

I1 = exp
󰀓 󰄁
12

+
󰄁
8
f tB−1Af − 󰄁 1

2

2
xt(B−1ν − 1)− (x1 + x2)

󰄁 1
2

2

󰀔

× ψ󰄁

󰀓
w1 − x1(1− z−1

1 ), z1

󰀔
ψ󰄁

󰀓
w2 − x2(1− z−1

2 ), z1

󰀔 N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )
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and

Λ1 =

󰀳

󰁃
z2

1−z2
0 0

0 z1
1−z1

0

0 0 Λ

󰀴

󰁄

The substitutions w1 󰀁→ w1 + x1(1 − z−1
1 ) and w2 󰀁→ w2 + x2(1 − z−1

2 ) imply according to
Lemma 3.1 that

ΦΞ(󰄁) = 〈I2〉(w1,w2,x1,x2,x∗),Λ2 (133)

where

I2 = exp
󰀓 󰄁
12

+
󰄁
8
f tB−1Af − 󰄁 1

2

2
xt(B−1ν − 1)− (x1 + x2)

󰄁 1
2

2

󰀔

× ψ󰄁(w1, z1)ψ󰄁(w2, z2)
N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and with Q11 = Q12 = Q22 = 0 from Lemma 6.7

Λ2 =

󰀳

󰁅󰁅󰁅󰁅󰁃

z1
1−z1

0 −1 0 0

0 z2
1−z2

0 −1 0

−1 0 0 0 −Q∗
1

0 −1 0 0 −Q∗
2

0 0 −Q∗
1
t −Q∗

2
t z∗′ −Q∗

󰀴

󰁆󰁆󰁆󰁆󰁄
.

We apply the pentagon identity of Theorem 3.6 to the ψh with arguments w1 and w1 and
obtain with the new integration variable x0

ΦΞ(󰄁) = 〈I3〉(x0,w1,w2,x1,x2,x∗),Λ3 (134)

where

I3 = exp
󰀓 󰄁
24

+
󰄁
8
f tB−1Af − 󰄁 1

2

2
xt(B−1ν − 1)− (x1 + x2)

󰄁 1
2

2

󰀔

× ψ󰄁

󰀓
− x0 − w2 +

w1z2 + w2z1
z0

, z1z
−1
0

󰀔
ψ󰄁

󰀓
x0 + w1 + w2 −

w1z2 + w2z1
z0

, z0

󰀔

× ψ󰄁

󰀓
− x0 − w1 +

w1z2 + w2z1
z0

, z2z
−1
0

󰀔 N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and

Λ3 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

(z1+z2−z1z2)2

(z1−1)z1(z2−1)z2
0 0 0 0 0

0 z1
1−z1

0 −1 0 0

0 0 z2
1−z2

0 −1 0

0 −1 0 0 0 −Q∗
1

0 0 −1 0 0 −Q∗
2

0 0 0 −Q∗
1
t −Q∗

2
t z∗′ −Q∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
.

With change of variables x0 󰀁→ x0 − w1 − w2 +
w1z2+w2z1

z0
Lemma 3.1 gives that

ΦΞ(󰄁) = 〈I4〉(x0,w1,w2,x1,x2,x∗),Λ4 (135)
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where

I4 = exp
󰀓 󰄁
24

+
󰄁
8
f tB−1Af − 󰄁 1

2

2
xt(B−1ν − 1)− (x1 + x2)

󰄁 1
2

2

󰀔

× ψ󰄁(−x0 + w1, z1z
−1
0 )ψ󰄁(x0, z0)ψ󰄁(−x0 + w2, z2z

−1
0 )

N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and

Λ4 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

(z1+z2−z1z2)2

(z1−1)z1(z2−1)z2

z1+z2−z1z2
(z1−1)z2

z1+z2−z1z2
(z2−1)z1

0 0 0
z1+z2−z1z2
(z1−1)z2

z1
1−z1

1 −1 0 0
z1+z2−z1z2
(z2−1)z1

1 z2
1−z2

0 −1 0

0 −1 0 0 0 −Q∗
1

0 0 −1 0 0 −Q∗
2

0 0 0 −Q∗
1
t −Q∗

2
t z∗′ −Q∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

We substitute w1 󰀁→ w1 + x0 and w2 󰀁→ w2 + x0 to obtain with Lemma 3.1 that

ΦΞ(󰄁) = 〈I5〉(x0,w1,w2,x1,x2,x∗),Λ5 (136)

where

I5 = exp
󰀓 󰄁
24

+
󰄁
8
f tB−1Af − 󰄁 1

2

2
xt(B−1ν − 1)− (x1 + x2)

󰄁 1
2

2

󰀔

× ψ󰄁(w1, z1z
−1
0 )ψ󰄁(x0, z0)ψ󰄁(w2, z2z

−1
0 )

N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and

Λ5 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

z1+z2−z1z2
(z1−1)(z2−1)

0 0 −1 −1 0

0 z1
(1−z1)z2

1 −1 0 0

0 1 z2
(1−z2)z1

0 −1 0

−1 −1 0 0 0 −Q∗
1

−1 0 −1 0 0 −Q∗
2

0 0 0 −Q∗
1
t −Q∗

2
t z∗′ −Q∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
.

By applying the first quad move from Theorem 3.4 to both ψ󰄁(w1, z1z
−1
0 ) and ψ󰄁(w2, z2z

−1
0 )

we obtain with new integration variables y1 and y2 that

ΦΞ(󰄁) = 〈I6〉(y1,y2,x0,w1,w2,x1,x2,x∗),Λ6 (137)

where

I6 = exp
󰀓
− 󰄁

24
+

󰄁
8
f tB−1Af − 󰄁 1

2

2
xt(B−1ν − 1)− (x1 + x2)

󰄁 1
2

2

+
󰀓
y1 +

w1z1z
−1
0

1− z1z
−1
0

󰀔󰄁 1
2

2
+
󰀓
y2 +

w2z2z
−1
0

1− z2z
−1
0

󰀔󰄁 1
2

2

󰀔 N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

× ψ󰄁

󰀓
y1 +

w1z1z
−1
0

1− z1z
−1
0

,
1

1− z1z
−1
0

󰀔
ψ󰄁

󰀓
y2 +

w2z2z
−1
0

1− z2z
−1
0

,
1

1− z2z
−1
0

󰀔
ψ󰄁(x0, z0)
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and

Λ6 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

(z1−1)z2
z1

0 0 0 0 0 0 0

0 (z2−1)z1
z2

0 0 0 0 0 0

0 0 z1+z2−z1z2
(z1−1)(z2−1)

0 0 −1 −1 0

0 0 0 z1
(1−z1)z2

1 −1 0 0

0 0 0 1 z2
(1−z2)z1

0 −1 0

0 0 −1 −1 0 0 0 −Q∗
1

0 0 −1 0 −1 0 0 −Q∗
2

0 0 0 0 0 −Q∗
1
t −Q∗

2
t z∗′ −Q∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

We change variables y1 󰀁→ y1−w1
z1z

−1
0

1−z1z
−1
0

and y2 󰀁→ y2−w2
z2z

−1
0

1−z2z
−1
0

using Lemma 3.1 to obtain

that

ΦΞ(󰄁) = 〈I7〉(y1,y2,x0,w1,w2,x1,x2,x∗),Λ7 (138)

where

I7 = exp
󰀓
− 󰄁

24
+

󰄁
8
f tB−1Af − 󰄁 1

2

2
xt(B−1ν − 1)− (x1 + x2)

󰄁 1
2

2
+ (y1 + y2)

󰄁 1
2

2

󰀔

× ψ󰄁

󰀓
y1,

1

1− z1z
−1
0

󰀔
ψ󰄁

󰀓
y2,

1

1− z2z
−1
0

󰀔
ψ󰄁(x0, z0)

N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and

Λ7 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

(z1−1)z2
z1

0 0 1 0 0 0 0

0 (z2−1)z1
z2

0 0 1 0 0 0

0 0 z1+z2−z1z2
(z1−1)(z2−1)

0 0 −1 −1 0

1 0 0 0 1 −1 0 0
0 1 0 1 0 0 −1 0
0 0 −1 −1 0 0 0 −Q∗

1

0 0 −1 0 −1 0 0 −Q∗
2

0 0 0 0 0 −Q∗
1
t −Q∗

2
t z∗′ −Q∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

Therefore, we can apply Fubini’s Theorem (Lemma 3.1) with the integration variables
w1, w2, x1, x2, to obtain that

ΦΞ(󰄁) = 〈I8〉(y1,y2,x0,x∗),Λ8 (139)
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where

I8 = exp
󰀓
− 󰄁

4
(B−1ν)1(B

−1ν)2 −
󰄁
24

+
󰄁
8
f tB−1Af +

󰄁 1
2

2

󰀃
x0

󰀃
(B−1ν)1 + (B−1ν)2

󰀄 󰀄

− 󰄁 1
2

2
y1

󰀃
(B−1ν)1 − 1

󰀄
− 󰄁 1

2

2
y2

󰀃
(B−1ν)2 − 1

󰀄

− 󰄁 1
2

2
x∗t 󰀃(B−1ν)∗ − (B−1ν)2Q

∗
1 − (B−1ν)1Q

∗
2 − 1

󰀄 󰀔

× ψ󰄁

󰀓
y1,

1

1− z1z
−1
0

󰀔
ψ󰄁

󰀓
y2,

1

1− z2z
−1
0

󰀔
ψ󰄁(x0, z0)

N󰁜

j=1

ψ󰄁(x
∗
j , z

∗
j )

and

Λ8 =

󰀳

󰁅󰁅󰁅󰁃

(z1−1)z2
z1

0 −1 −Q∗
1

0 (z2−1)z1
z2

−1 −Q∗
2

−1 −1 z1+z2−z2z2
(z1−1)(z2−1)

+ 2 Q∗
1 +Q∗

2

−Q∗
1
t −Q∗

2
t Q∗

1
t +Q∗

2
t −Q∗ +Q∗

1Q
∗
2 +Q∗

2Q
∗
1

󰀴

󰁆󰁆󰁆󰁄
.

Using Lemma 6.7, we obtain with respect to the integration variables x̃ = (x0, y1, y2, x
∗) and

some c ∈ 1
24
Z that

ΦΞ(󰄁) = ec󰄁〈I9〉x̃,Λ9 (140)

where with 󰁨A, 󰁨B and 󰁨ν as in Equation (130) and

I9 = exp
󰀓󰄁
8
󰁨f t󰁨B−1 󰁨A󰁨f − 󰄁 1

2

2
x̃t(󰁨B−1󰁨ν − 1)

󰀔 N+2󰁜

j=0

ψ󰄁(󰁨x∗
j , 󰁨z∗j ) (141)

and

Λ9 = diag(󰁨z′0, 󰁨z′′1 , 󰁨z′′2 , 󰁨z∗′)− 󰁨B−1 󰁨A. (142)

□

Lemma 6.7. With the notation used in the proof of the previous Proposition 6.6 we have
Q11 = Q12 = Q22 = 0 and the following equalities:

󰁨B−1 󰁨A =

󰀳

󰁅󰁅󰁃

−1 1 1 −Q∗
1 −Q∗

2

1 0 0 Q∗
1

1 0 0 Q∗
2

−Q∗
1
t −Q∗

2
t Q∗

1
t Q∗

2
t Q∗ −Q∗

1
tQ∗

2 −Q∗
2
tQ∗

1

󰀴

󰁆󰁆󰁄 , (143)

󰁨B−1󰁨ν =

󰀳

󰁅󰁅󰁃

−(B−1ν)1 − (B−1ν)2 + 1
(B−1ν)1
(B−1ν)2

(B−1ν)∗ − (B−1ν)1Q
∗
2 − (B−1ν)2Q

∗
1

󰀴

󰁆󰁆󰁄 , (144)

󰁨f t󰁨B−1󰁨ν = f tB−1ν + 󰁨f0 − 2(B−1ν)1(B
−1ν)2 . (145)



PERTURBATIVE INVARIANTS OF CUSPED HYPERBOLIC 3-MANIFOLDS 39

Proof. The relation B−1A = Q and the fact that the columns of (a1 | a2 | b∗) are linearly
independent imply that Q11 = Q12 = Q22 = 0. We will prove Equation (143) by showing

the identity after multiplying by the invertible matrix 󰁨B. For (143) we compute

󰀕
−1 −1 −1 0
0 a1 − b1 − b2 a2 − b1 − b2 b∗

󰀖
󰀳

󰁅󰁅󰁃

−1 1 1 −Q∗
1 −Q∗

2

1 0 0 Q∗
1

1 0 0 Q∗
2

−Q∗
1
t −Q∗

2
t Q∗

1
t Q∗

2
t Q∗ −Q∗

1
tQ∗

2 −Q∗
2
tQ∗

1

󰀴

󰁆󰁆󰁄

=

󰀣
−1 −1 −1 0

a1+a2−2b1−2b2
−b∗Q∗

1
t−b∗Q∗

2
t b∗Q

∗
1
t b∗Q

∗
2
t (a1−b1)Q∗

1
t+(a2−b2)Q∗

2
t

−b2Q∗
1
t−b1Q∗

2
t+b∗Q∗−b∗Q∗

1
tQ∗

2−b∗Q∗
2
tQ∗

1

󰀤

= 󰁨A.
(146)

For Equation (144), we compute

󰀕
−1 −1 −1 0
0 a1 − b1 − b2 a2 − b1 − b2 b∗

󰀖
󰀳

󰁅󰁅󰁃

−(B−1ν)1 − (B−1ν)2 + 1
(B−1ν)1
(B−1ν)2

(B−1ν)∗ − (B−1ν)1Q
∗
2 − (B−1ν)2Q

∗
1

󰀴

󰁆󰁆󰁄

=

󰀕
−1
ν

󰀖
.

(147)

For Equation (145), we note that for i = 1, 2 we have

󰁨f∗tQ∗
i = (󰁨B−1󰁨ν)i − 󰁨f0 − 󰁨f ′′i (148)

and so

󰁨f t 󰁨B−1󰁨ν = 󰁨f0 + ( 󰁨f ′
1 +

󰁨f2)(B−1ν)1 + ( 󰁨f1 + 󰁨f ′
2)(B

−1ν)2 + 󰁨f∗t(B−1ν)∗ − 2(B−1ν)1(B
−1ν)2 (149)

Then, using the analogous relations between the flattening as given in Equation (94) for the

shapes, we have 󰁨f ′
1 +

󰁨f2 = f ′
1 = f1 and 󰁨f1 + 󰁨f ′

2 = f ′
2 = f2. □

7. The series of the simplest hyperbolic 41 knot

In this section, we discuss an effective computation of the power series ΦΞ(󰄁) for the
simplest hyperbolic knot, namely the 41 knot. This example was studied extensively in [11].
From [11, Ex. 2.6], we obtain that the NZ datum Ξ41 is given by

A =

󰀕
2 2
1 1

󰀖
, B =

󰀕
1 1
1 0

󰀖
, ν =

󰀕
2
1

󰀖
, f =

󰀕
0
1

󰀖
, f ′′ =

󰀕
0
0

󰀖
, (150)

and z1 = z2 = ζ6 = e2πi/6. Therefore, we have

ΦΞ41 (󰄁) = e
󰄁
8 〈ψ󰄁(x1, ζ6)ψ󰄁(x2, ζ6)〉(x1,x2),Λ0 , (151)

where

Λ0 =

󰀕
ζ6 − 1 −1
−1 ζ6 − 1

󰀖
. (152)
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This is a two dimensional formal Gaussian integral which can be simplified. Using ζ6 =
1/(1− ζ6) = 1− ζ−1

6 and applying a change of coordinates x1 󰀁→ x1 − ζ6x2, we find that

ΦΞ41 (󰄁) = e
󰄁
8 〈ψ󰄁(x1 − ζ6x2, ζ6)ψ󰄁(x2, ζ6)〉(x1,x2),Λ1 , (153)

where

Λ1 =

󰀕
ζ6 − 1 0

0 2ζ6 − 1

󰀖
. (154)

We can apply Fubini’s theorem [4, Prop.2.13] and Corollary 3.5 to perform the integral over
x1. After renaming the variable x2 by x, we express ΦΞ41 (󰄁) by a one-dimensional formal
Gaussian integral

ΦΞ41 (󰄁) = e
󰄁
6

󰁇
exp

󰀓x
2
󰄁

1
2

󰀔
ψ󰄁(x, ζ6)

2
󰁈

x,2ζ6−1
. (155)

Using the definition of ψ󰄁 from Equation (1) and expanding to O(󰄁5/2), we obtain that

exp
󰀓x
2
󰄁

1
2

󰀔
ψ󰄁(x, ζ6)

2

= 1 +

󰀕
1

3
x3 +

󰀓
ζ6 −

1

2

󰀔
x

󰀖
󰄁1/2 +

󰀕
1

18
x6 +

󰀓1
2
ζ6 −

1

4

󰀔
x4 − 7

8
x2 +

󰀓
− 1

6
ζ6 +

1

6

󰀔󰀖
󰄁

+

󰀕
1

162
x9 +

󰀓1
9
ζ6 −

1

18

󰀔
x7 − 1

2
x5 +

󰀓
− 73

72
ζ6 +

77

144

󰀔
x3 +

󰀓 1

12
ζ6 +

1

4

󰀔
x

󰀖
󰄁3/2

+

󰀕
1

1944
x12 +

󰀓 5

324
ζ6 −

5

648

󰀔
x10 − 37

288
x8 +

󰀓
− 1337

2160
ζ6 +

1357

4320

󰀔
x6

+
󰀓 1

24
ζ6 +

1027

1152

󰀔
x4 +

󰀓23
48

ζ6 −
5

16

󰀔
x2 − 1

72
ζ6

󰀖
󰄁2 +O(󰄁5/2) .

(156)

Noting that 2ζ6 − 1 =
√
−3, we can then evaluate Equation (155) with Equation (20) to

obtain that

e−
󰄁
4ΦΞ41 (󰄁) = 1 +

11

72
√
−3

󰄁+
697

2(72
√
−3)2

󰄁2 +O(󰄁4) . (157)

This is in agreement with computations in [11, 12, 21]. The one-dimensional formal Gaussian
integral (155) gives an effective computation of the series ΦΞ41 (󰄁). Indeed, using a pari-gp

program one can compute one hundred coefficients in a few seconds and two hundred coef-
ficients in a few minutes, the first few of them are given by

e−
󰄁
4 ΦΞ41 (󰄁)

= 1−
11

216

√
−3 󰄁−

697

31104
󰄁2 +

724351

100776960

√
−3 󰄁3 +

278392949

29023764480
󰄁4 −

244284791741

43883931893760

√
−3 󰄁5

−
1140363907117019

94789292890521600
󰄁6 +

212114205337147471

20474487264352665600

√
−3 󰄁7 +

367362844229968131557

11793304664267135385600
󰄁8

−
44921192873529779078383921

1260940134703442115428352000

√
−3 󰄁9 −

3174342130562495575602143407

23109593741473993679123251200
󰄁10 +O(󰄁11) .

(158)

Similar to the case of the 41, one can obtain one-dimensional formal Gaussian integrals for
the next two simplest hyperbolic knots, the 52 and the (−2, 3, 7)-pretzel knot, whose details
we omit.
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Appendix A. Complements on the Fourier transform

In this appendix, we give the omitted details in the last step of the proof of Theorem 3.4.
They are an affine change of coordinates, followed by the corresponding computation of the
formal Gaussian integration.

The proof requires a version of formal Gaussian integration where the symmetric matrix
Λ󰄁 ∈ GLN( (z)[x]󰌻󰄁1/2󰌼) depends on 󰄁, such that Λ0 is invertible. In this case, for an
integrable function f󰄁(x, z) ∈ (z)[x]󰌻󰄁1/2󰌼, we define

〈〈f󰄁(x, z)〉〉x,Λ󰄁
:=

󰁶
det(Λ󰄁)

det(Λ0)

󰀍
exp

󰀃
− 1

2
xt(Λ󰄁 − Λ0)x

󰀄
f󰄁(x, z)

󰀎
x,Λ0

=

󰁕
e−

1
2
xtΛ(󰄁)xf󰄁(x, z) dx󰁕
e−

1
2
xtΛ(󰄁)x dx

∈ (z)󰌻󰄁󰌼 .
(159)

This version of formal Gaussian integration satisfies the properties of Lemmas 3.1 and 3.2.
We use Equations (34) and Equation (37) to obtain that

ψ󰄁(x, z) = e−
󰄁
24C󰄁(x, z)

󰁇󰁇
exp

󰀓y
2
󰄁

1
2

󰀔
ψ󰄁

󰀓
y,

1

1− zex󰄁1/2

󰀔󰁈󰁈

y,1−z−1e−x󰄁1/2
. (160)

Lemma 3.2 implies that

ψ󰄁(x, z) = C󰄁(x, z) exp
󰀓
− 󰄁

24
− 󰄁1/2

2
(a+ x)

󰀔

×
󰁇
exp

󰀓y
2
󰄁

1
2 +

󰀓 1

zex󰄁1/2
− 1

z

󰀔y2

2

󰀔
ψ󰄁

󰀓
y,

1

1− zex󰄁1/2

󰀔󰁈

y,1−z−1
,

(161)

where a = a󰄁(x, z) ∈ (z)[x]󰌻󰄁1/2󰌼 is given by

a :=
1

󰄁1/2
log

󰀓 1− z

1− zex󰄁1/2

󰀔
∈ (z)[x]󰌻󰄁1/2󰌼 . (162)

Similar to Equation (34) we write

ψ󰄁

󰀓
y,

1

1− zex󰄁1/2

󰀔
= exp

󰀓
A0 − (a(1− z−1) + x)y −

󰀓 1

zex󰄁1/2
− 1

z

󰀔y2

2

󰀔
ψ󰄁

󰀓
y + a,

1

1− z

󰀔

(163)



42 STAVROS GAROUFALIDIS, MATTHIAS STORZER, AND CAMPBELL WHEELER

where A0 = A0,󰄁(x, z) ∈ 1
󰄁 (z)[x]󰌻󰄁1/2󰌼 is given by

A0 =
1

2

󰀓
log

󰀓 −zex󰄁
1/2

1− zex󰄁1/2

󰀔
− log

󰀓 −z

1− z

󰀔󰀔
+

1

󰄁

󰀓
Li2

󰀓 1

1− zex󰄁1/2

󰀔
− Li2

󰀓 1

1− z

󰀔󰀔

+
a2

2z
+

a

󰄁1/2
log

󰀓 −z

1− z

󰀔

=
1

2
a󰄁

1
2 +

1

2
x󰄁

1
2 +

1

󰄁

󰀓
Li2

󰀓 1

1− zex󰄁1/2

󰀔
− Li2

󰀓 1

1− z

󰀔󰀔
+

a2

2z
+

a

󰄁1/2
log

󰀓 −z

1− z

󰀔
.

(164)
Then Equation (161) can be written as

ψ󰄁(x, z) = C󰄁(x, z) exp
󰀓
− 󰄁

24
− 󰄁1/2

2
(a+ x) + A0

󰀔

×
󰁇
exp

󰀓y
2
󰄁

1
2 − (a(1− z−1 + x)y)

󰀔
ψ󰄁

󰀓
y + a,

1

1− z

󰀔󰁈

y,1−z−1
.

(165)

We make the change of variables

w 󰀁→ w − a+
xz

1− z
(166)

and using Equation (23) of Lemma 3.1, we obtain that

ψ󰄁(x, z) = C󰄁(x, z) exp
󰀓
− 󰄁

24
− 󰄁1/2

2
(a+ x) + A0 +

a2

2
− a2

2z
+ ax+

x2

2(1− z−1)
− 󰄁1/2

2
a
󰀔

×
󰁇
exp

󰀓󰄁1/2

2

󰀓
y +

xz

1− z

󰀔󰀔
ψ󰄁

󰀓
y +

xz

1− z
,

1

1− z

󰀔󰁈

y,1−z−1
.

(167)
Hence, it remains to show that

1 = C󰄁(x, z) exp
󰀓
− 󰄁1/2

2
(a+ x) + A0 +

a2

2
− a2

2z
+ ax+

x2

2(1− z−1)
− 󰄁1/2

2
a
󰀔
. (168)

In other words, using the definitions of C󰄁(x, z) from Equation (34) and A0 from Equa-
tion (164) it suffices to prove that

0 =
1

󰄁

󰀓
Li2

󰀓 1

1− zex󰄁1/2

󰀔
− Li2

󰀓 1

1− z

󰀔󰀔
+

1

󰄁
󰀃
Li2(z)− Li2

󰀃
zex󰄁

1/2󰀄󰀄

+
a

󰄁1/2
log

󰀓 −z

1− z

󰀔
− x

󰄁1/2
log(1− z) +

a2

2
+ ax.

(169)

With the transformation formula of the dilogarithm

Li2

󰀓 1

1− z

󰀔
= Li2(z)−

π2

3
+ log(z) log(1− z)− 1

2
log2(z − 1) (170)
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the right hand side of the previous equation is given by

1

󰄁

󰀓
log

󰀃
zex󰄁

1/2󰀄
log

󰀃
1− zex󰄁

1/2󰀄− 1

2
log2

󰀃
zex󰄁

1/2 − 1
󰀄

− log(z) log(1− z) +
1

2
log2(z − 1)

󰀔

+
a

󰄁1/2
log

󰀓 −z

1− z

󰀔
− x

󰄁1/2
log(1− z) +

a2

2
+ ax.

(171)

With x󰄁1/2 = log
󰀃
ex󰄁

1/2󰀄
we compute

1

󰄁
log

󰀃
zex󰄁

1/2󰀄
log

󰀃
1− zex󰄁

1/2󰀄− 1

󰄁
log(z) log(1− z)− x

󰄁1/2
log(1− z) + ax

=
1

󰄁
log

󰀃
zex󰄁

1/2󰀄
log

󰀃
1− zex󰄁

1/2󰀄− 1

󰄁
log(z) log(1− z)− 1

󰄁
log(ex󰄁

1/2

) log(1− z) +
a

󰄁1/2
log

󰀃
ex󰄁

1/2󰀄

=
1

󰄁
log

󰀃
zex󰄁

1/2󰀄󰀓
log

󰀃
1− zex󰄁

1/2󰀄− log(1− z)
󰀔
+

a

󰄁1/2
log

󰀃
ex󰄁

1/2󰀄

= − a

󰄁1/2
log

󰀃
zex󰄁

1/2󰀄
+

a

󰄁1/2
log

󰀃
ex󰄁

1/2󰀄

= − a

󰄁1/2
log(z)

(172)
so that Equation (171) becomes

− 1

2󰄁
log2

󰀃
zex󰄁

1/2 − 1
󰀄
+

1

2󰄁
log2(z − 1) +

a

󰄁1/2
log

󰀓 −z

1− z

󰀔
+

a2

2
− a

󰄁1/2
log(z)

= − 1

2󰄁
log2

󰀃
zex󰄁

1/2 − 1
󰀄
+

1

2󰄁
log2(z − 1)− a

󰄁1/2
log(z − 1) +

a2

2

= − 1

2󰄁
log2

󰀃
zex󰄁

1/2 − 1
󰀄
+

1

2

󰀓 1

󰄁1/2
log(z − 1)− a

󰀔2

= − 1

2󰄁
log2

󰀃
zex󰄁

1/2 − 1
󰀄
+

1

2󰄁
log2(zex󰄁

1/2 − 1)

= 0,

(173)

which completes the proof of the last step of Theorem 3.4.

Appendix B. Complements on the pentagon identity

In this appendix, we give the omitted details in the last step of the proof of Theorem 3.6.
They are an affine change of coordinates, followed by the corresponding computation of the
formal Gaussian integration.

Equations (49) and Equation (34) give

ψ󰄁(x, z1)ψ󰄁(y, z2) = e−
󰄁
24C󰄁(x, z1)C󰄁(y, ẑ1)

󰀍󰀍
ψ󰄁(−w, ẑ1ẑ

−1
0 )ψ󰄁(w, ẑ0)ψ󰄁(−w, ẑ2ẑ

−1
0 )

󰀎󰀎
w,δ̂

, (174)

where
ẑ1 = z1e

x󰄁1/2 ẑ2 = z2e
y󰄁1/2

ẑ0 = ẑ1 + ẑ1 − ẑ1ẑ2, δ̂ =
(ẑ2 + ẑ2 − ẑ1ẑ2)

2

ẑ1ẑ2(1− ẑ1)(1− ẑ2)
.

(175)
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Note that ẑ1, ẑ2, ẑ0 and δ̂ are power series in 󰄁1/2 which, when evaluated at 󰄁 = 0, coincide
with z1, z2, z0 and δ given in Equations (46) and (47).

We apply Lemma 3.2 to obtain that

ψ󰄁(x, z1)ψ󰄁(y, z2) = e−
󰄁
24C󰄁(x, z1)C󰄁(y, ẑ1) exp

󰀓1
2
(log δ̂ − log δ)

󰀔

×
󰁇
exp

󰀓w2

2
(δ − δ̂)

󰀔
ψ󰄁(−w, ẑ1ẑ

−1
0 )ψ󰄁(w, ẑ0)ψ󰄁(−w, ẑ2ẑ

−1
0 )

󰁈

w,δ
.

(176)
where a = a󰄁(x, z) ∈ (z)[x]󰌻󰄁1/2󰌼 is given by

a :=
1

󰄁1/2
log(z0ẑ

−1
0 ). (177)

We write similarly to Equation (34)

ψ󰄁(−w, ẑ1ẑ
−1
0 )ψ󰄁(w, ẑ0)ψ󰄁(−w, ẑ2ẑ

−1
0 )

= exp(A0 + w((x+ y) + 2a+ Li0(z1z
−1
0 )(a+ x) + Li0(z0)a+ Li0(z2z

−1
0 )(a+ y)) +

w2

2
(δ̂ − δ))

× ψ󰄁(−w + a+ x, ẑ1ẑ
−1
0 )ψ󰄁(w − a, ẑ0)ψ󰄁(−w + a+ y, ẑ2ẑ

−1
0 )

(178)
where A0 = A0,󰄁(x, z) ∈ 1

󰄁 (z)[x]󰌻󰄁1/2󰌼 is given by

A0 :=
1

󰄁
(Li2(ẑ1ẑ

−1
0 ) + Li2(ẑ0) + Li2(ẑ2ẑ

−1
0 )− Li2(z1z

−1
0 ) + Li2(z0)− Li2(z2z

−1
0 ))

+
1

2
(log(1− ẑ1ẑ

−1
0 ) + log(1− ẑ0) + log(1− ẑ2ẑ

−1
0 )

− log(1− z1ẑ
−1
0 ) + log(1− z0) + log(1− z2z

−1
0 ))

+
1

󰄁1/2
(log(1− z1z

−1
0 )(a+ x)− log(1− z0)a+ log(1− z2z

−1
0 )(a+ y))

− 1

2
(Li0(z1z

−1
0 )(a+ x)2 + Li0(z0)a

2 + Li0(z2z
−1
0 )(a+ y)2)

(179)

Hence, ψ󰄁(x, z1)ψ󰄁(y, z2) can be written as

e−
󰄁
24C󰄁(x, z1)C󰄁(y, ẑ1) exp

󰀓1
2
(log(δ̂)− log(δ)) + A0

󰀔

×
󰁇
exp

󰀓
w((u+ v) + 2a+ Li0(z1z

−1
0 )(a+ u) + Li0(z0)a+ Li0(z2z

−1
0 )(a+ v))

󰀔

× ψ󰄁(−w + a+ x, ẑ1ẑ
−1
0 )ψ󰄁(w − a, ẑ0)ψ󰄁(−w, ẑ2ẑ

−1
0 )

󰁈

w+a+y,δ
.

(180)

With the change of variables

w 󰀁→ w + a+ x+ y − xz1 + yz2
z0

(181)
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combined with Equation (23) of Lemma 3.1, we obtain that

e−
󰄁
24 C󰄁(x, z1)C󰄁(y, ẑ1) exp

󰀓1

2
(log(δ̂)− log(δ)) +A0

󰀔

exp
󰀓 δ

2

󰀓
a+ x+ y −

xz2 + yz1

z0

󰀔2
+

󰀓
a+ x+ y −

xz2 + yz1

z0

󰀔
(x+ y + δa+ Li0(z1z

−1
0 )x+ Li0(z2z

−1
0 )y)

󰀔

×
󰁇
ψ󰄁

󰀓
− w − y +

xz2 + yz1

z0
, ẑ1ẑ

−1
0

󰀔
ψ󰄁

󰀓
w + x+ y +

xz2 + yz1

z0
, ẑ0

󰀔
ψ󰄁

󰀓
− w − x+

xz2 + yz1

z0
, ẑ2ẑ

−1
0

󰀔󰁈

w,δ
.

(182)

Hence, in order to prove Equation (48) it remains to prove that the term in front of the

bracket simplifies to e−
󰄁
24 . For this, we use the definitions of C󰄁 (35) and A0 (179) to obtain

log(C󰄁(x, z1)) + log(C󰄁(y, ẑ1)) +
1

2
(log(δ̂)− log(δ)) + A0 +

δ

2

󰀓
a+ x+ y − xz2 + yz1

z0

󰀔2

+
󰀓
a+ x+ y − xz2 + yz1

z0

󰀔
(x+ y + δa+ Li0(z1z

−1
0 )x+ Li0(z2z

−1
0 )y))

=
1

󰄁
(−Li2(ẑ1) + Li2(z1)− Li2(ẑ2) + Li2(z2) + Li2(ẑ1ẑ

−1
0 )− Li2(z1z

−1
0 )

+ Li2(ẑ
−1
0 )− Li2(z0) + Li2(ẑ2ẑ

−1
0 )− Li2(z2z

−1
0 ))

+
1

2
(− log(1− ẑ1) + log(1− z1)− log(1− ẑ2) + log(1− z2) + log δ̂ − log δ

+ log(1− ẑ1ẑ
−1
0 )− log(1− z1z

−1
0 ) + log(1− ẑ0)− log(1− z0)

+ log(1− ẑ2ẑ
−1
0 )− log(1− z2z

−1
0 ))

+
1

󰄁1/2
(− log(1− z1)x− log(1− z2)y + (x+ y)(log(z0)− log(ẑo))

+ log(1− z1z
−1
0 )(a+ x)− log(1− z0)a+ log(1− z2z

−1
0 )(a+ y))

+
a2

2
(δ − Li0(z1z

−1
0 )− Li0(z0)− Li0(z2z

−1
0 ))

+
󰀓
x+ y − xz2 + yz2

z0

󰀔󰀓
x+ y + Li0(z1z

−1
0 )x+ Li0(z2z

−1
0 )y − δ

2

󰀓
x+ y − xz2 + yz2

z0

󰀔󰀔

− Li0(z1z
−1
0 )

x2

2
− Li0(z2z

−1
0 )

y2

2
.

(183)

Inserting the definitions of δ (47) and δ̂ (175) and using the relations

1− z1z
−1
0 = z2(1− z1)z

−1
0 ,

1− z2z
−1
0 = z1(1− z2)z

−1
0 ,

1− z0 = (1− z1)(1− z2),

(184)

and similar ones for ẑ1, ẑ2 and ẑ0 we obtain that the terms

1

2
(− log(1− ẑ1) + log(1− z1)− log(1− ẑ2) + log(1− z2) + log δ̂ − log δ

+ log(1− ẑ1ẑ
−1
0 )− log(1− z1z

−1
0 ) + log(1− ẑ0)− log(1− z0)

+ log(1− ẑ2ẑ
−1
0 )− log(1− z2z

−1
0 ))

(185)
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vanish. Furthermore, we have

δ − Li0(z1z
−1
0 )− Li0(z0)− Li0(z2z

−1
0 ) = 2 (186)

as well as
󰀓
x+ y − xz2 + yz2

z0

󰀔󰀓
x+ y + Li0(z1z

−1
0 )x+ Li0(z2z

−1
0 )y − δ

2

󰀓
x+ y − xz2 + yz2

z0

󰀔󰀔

− Li0(z1z
−1
0 )

x2

2
− Li0(z2z

−1
0 )

y2

2
= xy.

(187)

Therefore, Equation (183) simplifies to

1

󰄁
(−Li2(ẑ1) + Li2(z1)− Li2(ẑ2) + Li2(z2) + Li2(ẑ1ẑ

−1
0 )− Li2(z1z

−1
0 )

+ Li2(ẑ
−1
0 )− Li2(z0) + Li2(ẑ2ẑ

−1
0 )− Li2(z2z

−1
0 ))

+
1

󰄁1/2
(− log(1− z1)x− log(1− z2)y + (x+ y)(log(z0)− log(ẑo))

+ log(1− z1z
−1
0 )(a+ x)− log(1− z0)a+ log(1− z2z

−1
0 )(a+ y))

+ a2 + xy.

(188)

Using the definition of a and the relations from Equation (184) we compute

1

󰄁1/2
(− log(1− z1)x− log(1− z2)y + (x+ y)(log(z0)− log(ẑo))

+ log(1− z1z
−1
0 )(a+ x)− log(1− z0)a+ log(1− z2z

−1
0 )(a+ y))

+ a2 + xy

=
1

󰄁1/2
(x(log(z2)− log(ẑ0)) + y(log(z1)− log(ẑ0))

+
1

󰄁
(log(z0)(log(z1) + log(z2)) + log2(z0)− log(ẑ0)(log(z1) + log(z2)))

=
1

󰄁
(log(z2) log(z0) + log(z1) log(z0)− log(z1) log(z2)

− log(ẑ2) log(ẑ0) + log(ẑ1) log(ẑ2)− log(ẑ1) log(ẑ0)).

(189)

Using the 5–term relation of the dilogarithm we obtain that the expression in Equation (188)

Li2(z1) + Li2(z2)− Li2(z1z
−1
0 )− Li2(z0)− Li2(z2z

−1
0 ) + log(z2) log(z0) + log(z1) log(z0)− log(z1) log(z2)

− Li2(ẑ1)− Li2(ẑ2) + Li2(ẑ1ẑ
−1
0 ) + Li2(ẑ

−1
0 ) + Li2(ẑ2ẑ

−1
0 )− log(ẑ2) log(ẑ0)− log(ẑ1) log(ẑ0) + log(ẑ1) log(ẑ2).

(190)

vanishes. In particular, the terms in front of the bracket in Equation (182) simplify to e−
󰄁
24

which concludes the proof of the last step of Theorem 3.6.
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